Copy Link
Add to Bookmark
Report

PiHKAL: The Chemical Story 1

eZine's profile picture
Published in 
PiHKAL
 · 16 Jul 2023

PiHKAL: The Chemical Story. File 1 of 6

This is part 1 of 6 of the second half of PiHKAL: A Chemical Love Story, by Alexander Shulgin and Ann Shulgin. Please forgive any typos or misprints in this file; further, because of ASCII limitations, many of the typographical symbols in the original book could not be properly represented in these files.

If you are seriously interested in the chemistry contained in these files, you should order a copy of the book PiHKAL. The book may be purchased for $22.95 ($18.95 + $4.00 postage and handling) from Transform Press, Box 13675, Berkeley, CA 94701. California residents please add $1.38 State sales tax.

At the present time, restrictive laws are in force in the United States and it is very difficult for researchers to abide by the regulations which govern efforts to obtain legal approval to do work with these compounds in human beings.... No one who is lacking legal authorization should attempt the synthesis of any of the compounds described in these files, with the intent to give them to man. To do so is to risk legal action which might lead to the tragic ruination of a life. It should also be noted that any person anywhere who experiments on himself, or on another human being, with any of the drugs described herin, without being familiar with that drug's action and aware of the physical and/or mental disturbance or harm it might cause, is acting irresponsibly and immorally, whether or not he is doing so within the bounds of the law.

A SHORT INDEX TO THE PHENETHYLAMINES

This short index to the phenethylamines lists the 179 entries that follow in alphabetical order. The abbreviation PEA is for phenethylamine, and A is for amphetamine. The long index includes all synonyms and is in Appendix A.

Code
Compact
chemical name
1
AEM
a-Ethyl-3,4,5-trimethoxy-PEA
2
AL
4-Allyloxy-3,5-dimethoxy-PEA
3
ALEPH
4-Methylthio-2,5-dimethoxy-A
4
ALEPH-2
4-Ethylthio-2,5-dimethoxy-A
5
ALEPH-4
4-Isopropylthio-2,5-dimethoxy-A
6
ALEPH-6
4-Phenylthio-2,5-dimethoxy-A
7
ALEPH-7
4-Propylthio-2,5-dimethoxy-A
8
ARIADNE
2,5-Dimethoxy-a-ethyl-4-methyl-PEA
9
ASB
3,4-Diethoxy-5-methoxy-PEA
10
B
4-Butoxy-3,5-dimethoxy-PEA
11
BEATRICE
2,5-Dimethoxy-4,N-dimethyl-A
12
BIS-TOM
2,5-Bismethylthio-4-methyl-A
13
BOB
4-Bromo-2,5,'-trimethoxy-PEA
14
BOD
2,5,'-Trimethoxy-4-methyl-PEA
15
BOH
-Methoxy-3,4-methylenedioxy-PEA
16
BOHD
2,5-Dimethoxy-'-hydroxy-4-methyl-PEA
17
BOM
3,4,5,'-Tetramethoxy-PEA
18
4-Br-3,5-DMA
4-Bromo-3,5-dimethoxy-A
19
2-Br-4,5-MDA
2-Bromo-4,5-methylenedioxy-A
20
2C-B
4-Bromo-2,5-dimethoxy-PEA
21
3C-BZ
4-Benzyloxy-3,5-dimethoxy-A
22
2C-C
4-Chloro-2,5-dimethoxy-PEA
23
2C-D
4-Methyl-2,5-dimethoxy-PEA
24
2C-E
4-Ethyl-2,5-dimethoxy-PEA
25
3C-E
4-Ethoxy-3,5-dimethoxy-A
26
2C-F
4-Fluoro-2,5-dimethoxy-PEA
27
2C-G
3,4-Dimethyl-2,5-dimethoxy-PEA
28
2C-G-3
3,4-Trimethylene-2,5-dimethoxy-PEA
29
2C-G-4
3,4-Tetramethylene-2,5-dimethoxy-PEA
30
2C-G-5
3,4-Norbornyl-2,5-dimethoxy-PEA
31
2C-G-N
1,4-Dimethoxynaphthyl-2-ethylamine
32
2C-H
2,5-Dimethoxy-PEA
33
2C-I
4-Iodo-2,5-dimethoxy-PEA
34
2C-N
4-Nitro-2,5-dimethoxy-PEA
35
2C-O-4
4-Isopropoxy-2,5-dimethoxy-PEA
36
2C-P
4-Propyl-2,5-dimethoxy-PEA
37
CPM
4-Cyclopropylmethoxy-3,5-dimethoxy-PEA
38
2C-SE
4-Methylseleno-2,5-dimethoxy-PEA
39
2C-T
4-Methylthio-2,5-dimethoxy-PEA
40
2C-T-2
4-Ethylthio-2,5-dimethoxy-PEA
41
2C-T-4
4-Isopropylthio-2,5-dimethoxy-PEA
42
Y-2C-T-4
4-Isopropylthio-2,6-dimethoxy-PEA
43
2C-T-7
4-Propylthio-2,5-dimethoxy-PEA
44
2C-T-8
4-Cyclopropylmethylthio-2,5-dimethoxy-PEA
45
2C-T-9
4-(t)-Butylthio-2,5-dimethoxy-PEA
46
2C-T-13
4-(2-Methoxyethylthio-2,5-dimethoxy-PEA
47
2C-T-15
4-Cyclopropylthio-2,5-dimethoxy-PEA
48
2C-T-17
4-(s)-Butylthio-2,5-dimethoxy-PEA
49
2C-T-21
4-(2-Fluoroethylthio)-2,5-dimethoxy-PEA
50
4-D
4-Trideuteromethyl-3,5-dimethoxy-PEA
51
-D
,'-Dideutero-3,4,5-trimethoxy-PEA
52
DESOXY
4-Me-3,5-Dimethoxy-PEA
53
2,4-DMA
2,4-Dimethoxy-A
54
2,5-DMA
2,5-Dimethoxy-A
55
3,4-DMA
3,4-Dimethoxy-A
56
DMCPA
2-(2,5-Dimethoxy-4-methylphenyl)-cyclopropylamine
57
DME
3,4-Dimethoxy-'-hydroxy-PEA
58
DMMDA
2,5-Dimethoxy-3,4-methylenedioxy-A
59
DMMDA-2
2,3-Dimethoxy-4,5-methylenedioxy-A
60
DMPEA
3,4-Dimethoxy-PEA
61
DOAM
4-Amyl-2,5-dimethoxy-A
62
DOB
4-Bromo-2,5-dimethoxy-A
63
DOBU
4-Butyl-2,5-dimethoxy-A
64
DOC
4-Chloro-2,5-dimethoxy-A
65
DOEF
4-(2-Fluoroethyl)-2,5-dimethoxy-A
66
DOET
4-Ethyl-2,5-dimethoxy-A
67
DOI
4-Iodo-2,5-dimethoxy-A
68
DOM
4-Methyl-2,5-dimethoxy-A
69
Y-DOM
4-Methyl-2,6-dimethoxy-A
70
DON
4-Nitro-2,5-dimethoxy-A
71
DOPR
4-Propyl-2,5-dimethoxy-A
72
E
4-Ethoxy-3,5-dimethoxy-PEA
73
EEE
2,4,5-Triethoxy-A
74
EEM
2,4-Diethoxy-5-methoxy-A
75
EME
2,5-Diethoxy-4-methoxy-A
76
EMM
2-Ethoxy-4,5-dimethoxy-A
77
ETHYL-J
N,a-diethyl-3,4-methylenedioxy-PEA
78
ETHYL-K
N-Ethyl-a-propyl-3,4-methylenedioxy-PEA
79
F-2
Benzofuran-2-methyl-5-methoxy-6-(2-aminopropane)
80
F-22
Benzofuran-2,2-dimethyl-5-methoxy-6-(2-aminopropane)
81
FLEA
N-Hydroxy-N-methyl-3,4-methylenedioxy-A
82
G-3
3,4-Trimethylene-2,5-dimethoxy-A
83
G-4
3,4-Tetramethylene-2,5-dimethoxy-A
84
G-5
3,4-Norbornyl-2,5-dimethoxy-A
85
GANESHA
3,4-Dimethyl-2,5-dimethoxy-A
86
G-N
1,4-Dimethoxynaphthyl-2-isopropylamine
87
HOT-2
2,5-Dimethoxy-N-hydroxy-4-ethylthio-PEA
88
HOT-7
2,5-Dimethoxy-N-hydroxy-4-(n)-propylthio-PEA
89
HOT-17
2,5-Dimethoxy-N-hydroxy-4-(s)-butylthio-PEA
90
IDNNA
2,5-Dimethoxy-N,N-dimethyl-4-iodo-A
91
IM
2,3,4-Trimethoxy-PEA
92
IP
3,5-Dimethoxy-4-isopropoxy-PEA
93
IRIS
5-Ethoxy-2-methoxy-4-methyl-A
94
J
a-Ethyl-3,4-methylenedioxy-PEA
95
LOPHOPHINE
3-Methoxy-4,5-methylenedioxy-PEA
96
M
3,4,5-Trimethoxy-PEA
97
4-MA
4-Methoxy-A
98
MADAM-6
2,N-Dimethyl-4,5-methylenedioxy-A
99
MAL
3,5-Dimethoxy-4-methallyloxy-PEA
100
MDA
3,4-Methylenedioxy-A
101
MDAL
N-Allyl-3,4-methylenedioxy-A
102
MDBU
N-Butyl-3,4-methylenedioxy-A
103
MDBZ
N-Benzyl-3,4-methylenedioxy-A
104
MDCPM
N-Cyclopropylmethyl-3,4-methylenedioxy-A
105
MDDM
N,N-Dimethyl-3,4-methylenedioxy-A
106
MDE
N-Ethyl-3,4-methylenedioxy-A
107
MDHOET
N-(2-Hydroxyethyl)-3,4-methylenedioxy-A
108
MDIP
N-Isopropyl-3,4-methylenedioxy-A
109
MDMA
N-Methyl-3,4-methylenedioxy-A
110
MDMC
N-Methyl-3,4-ethylenedioxy-A
111
MDMEO
N-Methoxy-3,4-methylenedioxy-A
112
MDMEOET
N-(2-Methoxyethyl)-3,4-methylenedioxy-A
113
MDMP
a,a,N-Trimethyl-3,4-methylenedioxy-PEA
114
MDOH
N-Hydroxy-3,4-methylenedioxy-A
115
MDPEA
3,4-Methylenedioxy-PEA
116
MDPH
a,a-Dimethyl-3,4-methylenedioxy-PEA
117
MDPL
N-Propargyl-3,4-methylenedioxy-A
118
MDPR
N-Propyl-3,4-methylenedioxy-A
119
ME
3,4-Dimethoxy-5-ethoxy-PEA
120
MEDA
3,4-Ethylenedioxy-5-methoxy-A
121
MEE
2-Methoxy-4,5-diethoxy-A
122
MEM
2,5-Dimethoxy-4-ethoxy-A
123
MEPEA
3-Methoxy-4-ethoxy-PEA
124
META-DOB
5-Bromo-2,4-dimethoxy-A
125
META-DOT
5-Methylthio-2,4-dimethoxy-A
126
METHYL-DMA
N-Methyl-2,5-dimethoxy-A
127
METHYL-DOB
4-Bromo-2,5-dimethoxy-N-methyl-A
128
METHYL-J
N-Methyl-a-ethyl-3,4-methylenedioxy-PEA
129
METHYL-K
N-Methyl-a-propyl-3,4-methylenedioxy-PEA
130
METHYL-MA
N-Methyl-4-methoxy-A
131
METHYL-MMDA-2
N-Methyl-2-methoxy-4,5-methylenedioxy-A
132
MMDA
3-Methoxy-4,5-methylenedioxy-A
133
MMDA-2
2-Methoxy-4,5-methylenedioxy-A
134
MMDA-3a
2-Methoxy-3,4-methylenedioxy-A
135
MMDA-3b
4-Methoxy-2,3-methylenedioxy-A
136
MME
2,4-Dimethoxy-5-ethoxy-A
137
MP
3,4-Dimethoxy-5-propoxy-PEA
138
MPM
2,5-Dimethoxy-4-propoxy-A
139
ORTHO-DOT
2-Methylthio-4,5-dimethoxy-A
140
P
3,5-Dimethoxy-4-propoxy-PEA
141
PE
3,5-Dimethoxy-4-phenethyloxy-PEA
142
PEA
PEA
143
PROPYNYL
4-Propynyloxy-3,5-dimethoxy-PEA
144
SB
3,5-Diethoxy-4-methoxy-PEA
145
TA
2,3,4,5-Tetramethoxy-A
146
3-TASB
4-Ethoxy-3-ethylthio-5-methoxy-PEA
147
4-TASB
3-Ethoxy-4-ethylthio-5-methoxy-PEA
148
5-TASB
3,4-Diethoxy-5-methylthio-PEA
149
TB
4-Thiobutoxy-3,5-dimethoxy-PEA
150
3-TE
4-Ethoxy-5-methoxy-3-methylthio-PEA
151
4-TE
3,5-Dimethoxy-4-ethylthio-PEA
152
2-TIM
2-Methylthio-3,4-dimethoxy-PEA
153
3-TIM
3-Methylthio-2,4-dimethoxy-PEA
154
4-TIM
4-Methylthio-2,3-dimethoxy-PEA
155
3-TM
3-Methylthio-4,5-dimethoxy-PEA
156
4-TM
4-Methylthio-3,5-dimethoxy-PEA
157
TMA
3,4,5-Trimethoxy-A
158
TMA-2
2,4,5-Trimethoxy-A
159
TMA-3
2,3,4-Trimethoxy-A
160
TMA-4
2,3,5-Trimethoxy-A
161
TMA-5
2,3,6-Trimethoxy-A
162
TMA-6
2,4,6-Trimethoxy-A
163
3-TME
4,5-Dimethoxy-3-ethylthio-PEA
164
4-TME
3-Ethoxy-5-methoxy-4-methylthio-PEA
165
5-TME
3-Ethoxy-4-methoxy-5-methylthio-PEA
166
2T-MMDA-3a
2-Methylthio-3,4-methylenedioxy-A
167
4T-MMDA-2
4,5-Thiomethyleneoxy-2-methoxy-A
168
TMPEA
2,4,5-Trimethoxy-PEA
169
2-TOET
4-Ethyl-5-methoxy-2-methylthio-A
170
5-TOET
4-Ethyl-2-methoxy-5-methylthio-A
171
2-TOM
5-Methoxy-4-methyl-2-methylthio-A
172
5-TOM
2-Methoxy-4-methyl-5-methylthio-A
173
TOMSO
2-Methoxy-4-methyl-5-methylsulfinyl-A
174
TP
4-Propylthio-3,5-dimethoxy-PEA
175
TRIS
3,4,5-Triethoxy-PEA
176
3-TSB
3-Ethoxy-5-ethylthio-4-methoxy-PEA
177
4-TSB
3,5-Diethoxy-4-methylthio-PEA
178
3-T-TRIS
4,5-Diethoxy-3-ethylthio-PEA
179
4-T-TRIS
3,5-Diethoxy-4-ethylthio-PEA

PHENETHYLAMINES

#1 AEM; a-ETHYLMESCALINE;
2-AMINO-1-(3,4,5-TRIMETHOXYPHENYL)BUTANE;
1-(3,4,5-TRIMETHOXYPHENYL)-2-AMINOBUTANE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: To a solution of 45 g 3,4,5-trimethoxybenzaldehyde in 1.2 L IPA, there was added 125 g nitropropane and 67.5 g t-butylammonium acetate and the reaction mixture was held at reflux for 16 h. This was poured into 6 L H2O, and extracted with 2x250 mL hexane. The pooled extracts were stripped of solvent under vacuum giving a residue that slowly set to a crystalline mass. On filtering, there was obtained 9.4 g of a crude yellow product which, on recrystallization from hexane provided 8.7 g of slightly sticky bright yellow crystals of 2-nitro-1-(3,4,5-trimethoxyphenyl)butene-1, with a mp of 71-73 °C. A second recrystallization from hexane gave fine yellow crystals with a mp of 72-73 °C. Attempts at the preparation of this nitrostyrene by the more conventional methods with ammonium acetate in acetic acid led either to the formation of a white product C23H30N2O8 which was composed of a molecule of the nitrostyrene, one of the benzaldehyde itself, and a molecule of ammonia, or to 3,4,5-trimethoxybenzonitrile, from reaction with the decomposition products of nitropropane.

A stirred suspension of 5.9 g LAH in 310 mL anhydrous Et2O was held at a gentle reflux in an inert atmosphere. A solution of 8.5 g 2-nitro-1-(3,4,5-trimethoxyphenyl)butene-1 in 125 mL Et2O is added drop-wise over the course of 0.5 h. The reaction was maintained at reflux for 6 h, then cooled, and the excess hydride destroyed by the cautious addition of 300 mL 1.8 N H2SO4. The phases were separated, and the aqueous phase brought to a pH of 6 by the addition of a saturated Na2CO3 solution. The neutral solution was brought to a boil, and clarified by filtration through paper. To the hot filtrate there was added a solution of 8.9 g picric acid in 100 mL boiling EtOH. The mixture was stirred and cooled, with the formation of a heavy yellow crystalline mass. After standing in the ice tub for several hours the mixture was filtered, providing 8.0 g of the picrate salt with a mp of 176-181 °C from H2O. A solution of this salt in 300 mL boiling H2O was treated with 60 mL concentrated HCl. On cooling, there was a deposition of picric acid, which was removed by filtration. The aqueous filtrate was washed with 3x50 mL nitrobenzene, then with 3x50 mL Et2O. The pH was brought above 9 by the addition of aqueous NaOH, and the filtrate was extracted with 3x100 mL CH2Cl2. Removal of the solvent from the pooled extracts gave a nearly colorless oil, which was dissolved in 300 mL anhydrous Et2O and saturated with hydrogen chloride gas. The white crystals of 2-amino-1-(3,4,5-trimethoxyphenyl)butane hydrochloride (AEM) were removed by filtration, Et2O washed, and air dried. They weighed 4.72 g.

DOSAGE: greater than 220 mg.

DURATION: unknown.

EXTENSIONS AND COMMENTARY: The extension of the two-carbon chain of mescaline by alpha-methylation to the three carbon chain of TMA approximately doubled the potency of the compound. And it was felt to be a completely logical possibility that, by extending it one more carbon atom, to the four carbon chain of alpha-ethyl-mescaline, it might double again. And following that logical progression, the doubling of potency with each additional carbon atom, the factor would be 2 to the 7th power by the alpha-octyl (or 256x that of mescaline, or a milligram as active dose) and with a side chain of a 70-carbon alkyl group (alpha-heptacontylmescaline) it would take just a single molecule to be intoxicating. This was rich fantasy stuff. As an active compound, just where would it go in the brain? With an 80-carbon side-chain, would one-thousandth of a single molecule be enough for a person? Or might a single molecule intoxicate a thousand people? And how long a chain on the alpha-position might be sufficient that, by merely writing down the structure on a piece of paper, you would get high? Maybe just conceiving the structure in your mind would do it. That is, after all, the way of homeopathy.

Maybe it was just as well that this added two-carbon side-chain with lowered activity was already enough to disprove the doubling pattern. But by the time this non-activity had been learned, the alpha series had already been pushed out quite aways. The machinery of making the appropriate nitroalkane was straightforward, by reaction of the alkyl halide with nitrous acid, and separating the unwanted nitrite ester from the wanted nitroalkane by fractional distillation. The nitrostyrenes all formed reasonably although often in terrible yields, and reduced reasonably, and all formed crystalline picrates for isolation and crystalline hydrochloride salts for pharmacological manipulation. But since the first of these, AEM, was not active, there was no enthusiasm for tasting anything higher. This family was never published; why publish presumably inactive and thus uninteresting material? The Table presents the properties of the precursor nitrostyrenes, and the product picrate and hydrochloride salts, at least whatever information I can still find after thirty years:

TABLE. Physical Properties of the a-Alkylmescaline Homologues and their Precursor Nitrostyrenes

Code
Name
NS mp °C
picrate mp °C
HCl mp °C
APM
Alpha-propylmescaline
82-83
214-218

ABM
Alpha-butylmescaline
73-74
169-174
182-184
AAM
Alpha-amylmescaline
54-55
162-163
155-158
AHM
Alpha-hexylmescaline
51-52

ASM*
Alpha-heptylmescaline
43-44

AOM
Alpha-octylmescaline
**

ANM
Alpha-nonylmescaline
46-47
***

AUM
Alpha-undecylmescaline
***

* S is for septyl, to distinguish heptyl from hexyl.
** Never made, as no nonylbromide could be located to make the needed nitrononane.
*** The synthesis got as far as the nitrostyrene stage when the inactivity of AEM was determined, and the project was dropped.

#2 AL; 4-ALLYLOXY-3,5-DIMETHOXYPHENETHYLAMINE; 3,5-DIMETHOXY-4-ALLYLOXYPHENETHYLAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 5.8 g of homosyringonitrile (see under E for its preparation), 100 mg decyltriethylammonium iodide, and 13.6 g allyl iodide in 50 mL anhydrous acetone was treated with 6.9 g finely powdered anhydrous K2CO3 and held at reflux for 16 h. The color changed from a near-black to a light yellow. The mixture was filtered, the solids washed with acetone, and the solvent from the combined filtrate and washes removed under vacuum. The residue was suspended in acidified H2O, and extracted with 3x100 mL CH2Cl2. The pooled extracts were washed with 2x50 mL 5% NaOH, once with dilute HCl (which lightened the color of the extract) and then stripped of solvent under vacuum giving 12.4 g of an amber-colored oil. This was distilled at 125-137 °C at 0.1 mm/Hg to yield 5.7 g of 3,5-dimethoxy-4-allyloxyphenylacetonitrile as a yellow oil. Anal. (C13H15NO3S) C,H.

A suspension of 4.0 g LAH in 150 mL anhydrous THF under N2 was cooled to 0 °C and vigorously stirred. There was added, dropwise, 2.8 mL 100% H2SO4, followed by 5.5 g 3,5-dimethoxy-4-allyloxyphenylacetonitrile in 10 mL anhydrous THF. The reaction mixture was stirred at 0 °C for a few min, then brought to a reflux on the steam bath for 30 min. After cooling back to room temperature, there was added sufficient IPA to destroy the excess hydride, followed by sufficient 10% NaOH to form granular solids. These were removed by filtration, and washed with 20 mL IPA. The filtrate and washes were stripped of solvent under vacuum andthe residue added to 100 mL dilute H2SO4. This was washed with 2x50 mL CH2Cl2, made basic with aqueous NaOH, and extracted with 2x75 mL CH2Cl2. These extracts were pooled, the solvent removed under vacuum, and the residue distilled at 110-120 °C at 0.4 mm/Hg to give 4.9 g of a colorless oil. This was dissolved in 15 mL IPA, neutralized with concentrated HCl (55 drops required), and diluted with 50 mL Et2O. The product was removed by filtration, washed with Et2O, and air dried to give 4.9 g of 3,5-dimethoxy-4-allyloxyphenethylamine hydrochloride (AL) as white crystals.

DOSAGE: 20 - 35 mg.

DURATION: 8 - 12 h.

QUALITATIVE COMMENTS: (with 24 mg) I first became aware of something in about 10 minutes, a pleasant increase in energy. By 20 minutes it was getting pronounced and was a nice, smooth development. During the next hour positive and negative feelings developed simultaneously. Following a suggestion, I ate a bit of food even though I had not been hungry, and to my surprise all the negative feelings dropped away. I felt free to join the others wherever they were at. I moved into the creative, free-flowing kind of repertoire which I dearly love, and found everything enormously funny. Much of the laughter was so deep that I felt it working through buried depressions inside me and freeing me. From this point on, the experience was most enjoyable. The experience was characterized by clear-headedness and an abundance of energy which kept on throughout the day and evening. At one point I went out back and strolled along to find a place to worship. I had a profound sense of the Presence and great love and gratitude for the place, the people, and the activities taking place. The come-down from the experience was very gradual and smooth. Food tasted wonderful. I went to bed late, and quite ready for bed, although the energy was still running. However, sleep was not long in coming.

(with 24 mg) The onset was extremely gradual and graceful, with the first alert that one could really sense at about 50 minutes. This was succeeded by a slow gentle climb to the peak at one hour and fifteen minutes. The experience itself left all of the sensory modalities functional; speech was cogent and rather fluid. In fact, there was an unusual ease of free association. All throughout the session, the talk was high in spirits and somehow indicative of an inner excitement. Affect was entirely pleasant, but not exalting nor conducive to insight or to problem solving. There were no requirements for withdrawal into the self. The material seemed wholly social in nature. No visual, auditory or olfactory sharpening was in evidence. The plateau for this material seemed unusually long. I was unable to sleep for several hours, and took 25 mg Librium before sleep arrived. The next day was a lethargic and slow one, with the inner feeling that the effects had not worn off until the middle of the day following ingestion.

(with 35 mg) I was a distinct +1 in 35 minutes and a +2 by the end of the hour. My head congestion in no way cleared up, absolving the material from having that particular virtue. The entire experience was somewhat dissociated Q I could not connect with my feelings. Although my mind remained clear, there was a hangover feeling at the end of the experiment.

EXTENSIONS AND COMMENTARY: This compound was first explored in Prague by Leminger. He provided only the synthetic details and the statement that it was the most active compound that he had studied, with activity at 20 milligrams, with perceptual changes, color enhancement, and difficult dreams during sleep that night. Some effects persisted for more than 12 hours. Dosages above 35 milligrams remain unexplored.

As AL is one of the most potent 3,4,5-trisubstituted phenethylamines yet described, and since the corresponding amphetamines are of yet greater potency, it would be a good guess that 4-allyloxy-3,5-dimethoxyamphetamine (3C-AL) would be an interesting compound to explore. It could be made from syringaldehyde in reaction with allyl iodide, followed by the formation of a nitrostyrene with nitroethane, followed by reduction with aluminum hydride. It is, as of the present time, both unsynthesized and unexplored.

#3 ALEPH; DOT; PARA-DOT; 2,5-DIMETHOXY-4-METHYLTHIOAMPHETAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 2.3 g 2,5-dimethoxy-4-(methylthio)benzaldehyde (see under 2C-T for its synthesis) in 7.5 mL nitroethane was treated with 0.45 g anhydrous ammonium acetate and heated on the steam bath for 6 h. The excess solvent/reagent was removed under vacuum leaving a mass of orange crystals as residue. These were ground up under 10 mL MeOH, col-lected by filtration, washed with a little MeOH, and air dried to provide 2.6 g crude 1-(2,5-dimethoxy-4-methylthiophenyl)-2-nitropropene. After recrystallization from 140 mL boiling MeOH, filtering and drying there was in hand 1.8 g of bright orange crystals with a mp of 137-138 °C. Anal. (C12H15NO4S) C,H,N,S.

A suspension of 1.4 g LAH in 10 mL anhydrous Et2O and 40 mL anhydrous THF was put under an inert atmosphere and, with good stirring, brought up to a gentle reflux. A solution of 1.8 g 1-(2,5-dimethoxy-4-methylthiophenyl)-2-nitropropene in 30 mL anhydrous THF was added dropwise at a rate that maintained the reflux. Heating and stirring were maintained for an additional 7 h, then the reaction mixture was allowed to return to room temperature. There was added 1.6 mL H2O (dissolved in a little THF), followed by 1.6 mL 15% NaOH, and finally another 4.8 mL H2O. Stirring was continued until all the curdy solids had turned white. The reaction mixture was filtered, and the filter cake washed with THF. The filtrate and the washings were combined, and the solvent removed under vacuum. The residue was 1.3 g of a colorless oil that solidified. Its mp of 90-93 °C was improved slightly to 91-93 °C with recrystallization from hexane. The product was dissolved in 25 mL warm IPA, neutralized with concentrated HCl (0.57 mL required) and then diluted with 100 mL anhydrous Et2O. After a moment's delay, the white crystalline product appeared. It was removed by filtration, washed with Et2O, and air dried to provide 1.2 g 2,5-dimethoxy-4-methylthioamphetamine hydrochloride (ALEPH) with a mp of 200-201 °C. Recrystallization from IPA gave an analytical sample with a mp of 204-205 °C. Anal. (C12H20ClNO2S) C,H; N: calcd, 5.04; found, 5.52.

DOSAGE: 5 - 10 mg.

DURATION: 6 - 8 h.

QUALITATIVE COMMENTS: (with 5 mg) The initial hints of action were physical Q warming of first the legs, and then a comfortable warmth spread over the entire body. Intense intellectual stimulation, one that inspired the scribbling of some 14 pages of handwritten notes. Which is a pretty good record for an experience that is almost entirely non-verbal. The afterglow was benign and rich in empathy for everything. And by the sixth hour I was quite hungry.

(with 10 mg) There was a rapid shift of frame of reference that made simple tasks such as reading and tuning the radio quite alien. I happened to catch the eyes of Pretty Baby, the cat, at the same moment she looked at me, and she turned and fled. I am able to interact with people on the telephone quite well but mechanical things, such as arranging flowers or alphabetizing names, are beyond me. Driving would be impossible.

EXTENSIONS AND COMMENTARY: This specific compound is probably the first sulfur-containing phenethylamine to have been evaluated as a potentially active CNS stimulant or psychedelic. It was a complete, total, absolute unknown. The first trials were made at the sub-microgram level, specifically at 0.25 micrograms, at 11:30 AM on September 3, 1975. Part of this extreme precaution was due to the uniqueness of a new heteroatom in a phenethylamine system. But part was due to the strange manic excitement that occurred at the time of the isolation and characterizing of the final product in the laboratory. Although it was certainly all placebo response, I was jumpy and unable to stay in the lab for more than a few minutes at a time. Maybe dust in the air? Maybe some skin contact with the free base? Now, I know there was nothing, but the possibility of extraordinary potency was real, and I did indeed wash everything down anyway. In fact, it took a total of 18 trials to work the experimental dosage up to as much as a single milligram. In retrospect, overly cautious. But retrospection, as they say, is cheap.

The 5 milligram experiment, briefly quoted from above, is the stuff of Chapter 14 of this book, important in that it gives an interesting example of some thought processes associated with psychedelic intoxication, ego-inflation, and what might be thought of as bits of mania. As is always the case with peak experiences that happen to be catalyzed by drugs, this extraordinary event could not be duplicated. At 7 milligrams there was an uneventful +1, and some 10 milligrams was needed to generate a full +3 experience. The first clue of the erratic nature of the Aleph family came from an independent assay by a colleague of mine, one who was very familiar with such states of consciousness, but for whom this was not a time for peak experiences. At 10 milligrams he told me that he had had only mild effects which he found relatively uninteresting.

As it stands, ALEPH remains relatively unexplored. Its two positional isomers are entered here as ORTHO-DOT and META-DOT. Three higher homologues have been more thoroughly looked at, and the generic name ALEPH (the first letter of the Hebrew alphabet) was given this group on the basis that they might have extraordinary properties in common. But the real treasure came in the exploring of the 2-carbon homologues, the compounds that make up the 2C-T family. Here, there proved to be much less uncertainty as to reasonable dosages, and much more richness in the subjective nature of the experience.

#4 ALEPH-2; 2,5-DIMETHOXY-4-ETHYLTHIOAMPHETAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 2.0 g 2,5-dimethoxy-4-(ethylthio)benzaldehyde (see under 2C-T-2 for its synthesis) in 12 mL nitroethane was treated with 0.4 g anhydrous ammonium acetate and heated on the steam bath for 3 h. All volatiles were removed under vacuum, leaving a residue that set up as brilliant red crystals. These were mechanically removed from the evaporation flask, blown free of nitroethane vapor, and recrystallized from boiling EtOH, producing 1.8 g pale orange crystals, with a mp of 110-112 °C. Recrystallization from 20 mL boiling IPA gave, after filtering and air drying, 1.70 g light orange crystals of 1-(2,5-dimethoxy-4-ethylthiophenyl)-2-nitropropene with a mp of 112-113 °C.

A suspension of 1.2 g LAH in 75 mL anhydrous THF was put under an inert atmosphere and, with good stirring, brought up to a gentle reflux. A solution of 1.5 g 1-(2,5-dimethoxy-4-ethylthiophenyl)-2-nitropropene in 20 mL anhydrous THF was added dropwise. Heating and stirring were maintained for an additional 24 h, and then the reaction mixture was allowed to come back to room temperature with stirring. There was added 1.4 mL H2O (dissolved in a little THF), followed by 1.4 mL 15% NaOH and finally another 4.2 mL H2O. Stirring was continued until all the curdy solids had turned white. The reaction mixture was filtered, and the filter cake washed with THF. The filtrate and the washings were combined, and the solvent removed under vacuum. The residue was 1.1 g of a pale amber oil. This was dissolved in 6 mL IPA, neutralized with concentrated HCl (about 8 drops were required) and then diluted with 150 mL anhydrous Et2O. The slightly cloudy solution was stirred for a couple of min, then there was the formation of a heavy white crystalline mass. This was removed by filtration, washed with Et2O, and air dried to provide 1.1 g 2,5-dimethoxy-4-ethylthioamphetamine hydrochloride (ALEPH-2) with a mp of 128-130 °C with decomposition.

DOSAGE: 4 - 8 mg

DURATION: 8 - 16 h.

QUALITATIVE COMMENTS: (with 4 mg) There was a warm feeling in the total body and a light pressure in the head that changed with time into the feeling of a balloon without any anatomical definition. The usual color perception was not very much increased, and my vision was not sharpened as it was with DOM. Rather, I noticed waves of movement, very smooth and not too busy. Both my tactile perception and auditory acuity were enhanced. The main effect for me was, paradoxically, an easier handling of the outer world. None of the jitters of amphetamine. The body feeling is good, healthy, and I am at peace with the body-mind dualism. These are pretty much personal comments Q I will write up the pharmacological points later.

(with 5 mg) This turned out to be a day of extraordinary visuals and interpretations. About two hours into it, I felt that the effects were still climbing, but there was a marvelous onset of visual distortions and illusions, right at the edge of hallucination. The logs in the fireplace were in continuous motion. The notepaper I was writing on seemed to scrunch and deform under the pressure of the pen. Nothing would stay still; everything was always moving. There was a phase of unabated inflation. The intensity was noticeably dropping at the five hour point and I observed considerable residual shakes and a muscular tremor. Even towards midnight there was some tooth-rubbiness, but I was able to get a somewhat fretful though adequate sleep.

(with 5 mg) I was exposed to a number of new environments and it was difficult to completely separate the experience into what was seen differently and what was seen for the first time. The Santa Cruz Mystery Spot should have been bizarre but it was simply hokey. And yet the boardwalk that should have been depressing was totally magical. The day was unworldly and I ended up with considerable muscular weakness. All in all, I handled it well, but I probably won't do it again.

(with 7 mg) An amazing unification of visual hallucination seen only in the very fine detail of something, and what must be considered retinal hallucination. There is no one-to-one correspondence between the many retinal cells of the high-resolution part of the eye. Thus, the mind can pick and choose, sometimes from the right eye, and sometimes from the left. And so a small curve or bump can become whatever you wish. For a moment. And then it chooses again, but differently. Is all of our perceived world as subjective as this?S

(with 8 mg) Extreme intoxication, but almost no visual phenomena. Even well into the evening, I know I absolutely could not drive. Why? I don't know, since this experiment, at least, seemed to be quite free of strange colors and wiggly lines and streaks of light. It's that I don't trust that the reality I see is the same reality that the other driver might see. I am very much the center of the world about me, and I don't think I could trust anyone else to fully respect my reality.

EXTENSIONS AND COMMENTARY: As with ALEPH itself, and in most ways with the entire ALEPH family, there is no predictability of the dose/response relationship. One person had expressed his psychic isolation by taking and maintaining a fetal position in relative hibernation for several hours and with substantial amnesia; this at a four milligram dose. Yet another person, at fully twice this amount, was aware of a slight light-headedness that could in no way be measured as more than a bare threshold. But by the time this erratic nature had become apparent, the ALEPHS had been assigned and made, up to and including ALEPH-7.

ALEPH-3 was intended to be the methallylthio compound, 2,5-dimethoxy-4-('-methallylthio)amphetamine. The thioether (2,5-dimethoxyphenyl '-methallyl sulfide) was easily made from 2,5-dimethoxythiophenol (see 2C-T-2 for its preparation) with 3.4 g dissolved in a solution of 1.7 g KOH in 25 mL boiling EtOH, and 2.72 g methallyl chloride, heated 1 h on the steam bath, poured into 250 mL H2O, extracted with 3x100 mL CH2Cl2, and solvent removal yielding 4.4 g of the sulfide as an amber oil. An effort to convert this to 2,5-dimethoxy-4-('-methallylthio)benzaldehyde (7.2 g POCl3, 6.7 g N-methylformanilide, 4.2 g of the crude sulfide from above, 15 min heating on the steam bath, H2O hydrolysis, hexane extraction of the residues from a CH2Cl2 extraction) produced 3.1 g of a peppermint-smelling oil that distilled at 140-160 °C at 0.3 mm/Hg and which did indeed have an aldehyde group present (by proton NMR) but the rest of the spectrum was a mess, and the project was abandoned.

Several years later, this entire project was reinitiated, and the aldehyde was obtained as a yellow crystal, but again it was not pursued. At that time, the earlier try had been totally forgotten, and a brand new ALEPH- (or 2C-T-) number had been assigned; i.e., 20. Thus, the corresponding phenethylamine (2,5-dimethoxy-4-('-methallylthio)phenethylamine), had it ever been made, which it was not, would have been called either 2C-T-3 or 2C-T-20, and the amphetamine homologue would probably have been ALEPH-20.

A closely related 2C-T-X compound was also started quite a while later Q this was the allylthio homologue of the methallyl material 2C-T-3 or 2C-T-20. Its place in the flow of things is evident from its numbering, 2C-T-16. A mixture of 2,5-dimethoxythiophenol and KOH and allyl chloride in MeOH gave 2,5-dimethoxyphenyl allyl sulfide as a white oil which boiled at 110-125 °C at 0.25 mm/Hg. This, with POCl3 and N-methylformanilide provided 2,5-dimethoxy-4-(allylthio)benzaldehyde which distilled at 140-160 °C at 0.4 mm/Hg and could be recrystallized from MeOH as a pale yellow solid. Reaction of this aldehyde in nitroethane in the presence of ammonium acetate (steam bath for 2.5 h) provided 2,5-dimethoxy-4-allylthio-'-nitrostyrene as red crystals from acetonitrile. Its mp was 114-115 °C. Anal. (C13H15NO4S) C,H. This has not yet been reduced to the final amine, 2,5-dimethoxy-4-allylthiophenethylamine, 2C-T-16. The corresponding amphetamine would be, of course, ALEPH-16.

ALEPH-5 was to be the cyclohexylthio analogue (2,5-dimethoxy-4-cyclohexylthioamphetamine). The thioether (2,5-dimethoxyphenyl cyclohexyl sulfide) was successfully made from 1.7 g 85% KOH pellets in 25 mL hot EtOH, 3.4 g 2,5-dimethoxythiophenol (again, see under 2C-T-2 for its preparation), and 4.9 g cyclohexyl bromide, 3 h on the steam bath, into 500 mL H2O, extraction with 3x100 mL CH2Cl2, washing the extracts with 5% NaOH, and evaporation to yield 5.2 g of an amber oil. The aldehyde, (made from 6.1 g POCl3 and 5.4 g N-methylformanilide, heated until claret colored, then treated with 5.0 g of the above crude thioether, heating for 20 min on the steam bath, into 300 mL H2O, and over-night stirring) was obtained as 3.1 g of a flesh-colored solid that was clearly neither pure nor completely correct. Repeated partitioning with organic solvents and cooling and scratching the residues finally provided a pale orange crystal (1.3 g, mp 88-93 °C) which, after twice recrystallizing from MeOH, gave 0.4 g of pale yellow crystals with a mp 95-96 °C and a textbook perfect NMR in CDCl3 (CHO, 1H (s) 10.41; ArH 2H (s) 6.93, 7.31; OCH3, 6H, (2s) at 3.88 and 3.92; CH, 1H br. at 3.34; and (CH2)5 10H br. at 1.20-2.34). The nitrostyrene was prepared from 200 mg of the above aldehyde in 1.2 mL nitroethane and 0.1 g ammonium acetate overnight on the steam bath, the solvent removed to give an orange oil that spontaneously crystallized after a few months' standing. This was never characterized, but sits there on the shelf to be reduced to ALEPH-5 some inspired day. The two-carbon homo-logue of this (2,5-dimethoxy-4-cyclohexylthiophenethylamine) will someday be called 2C-T-5 (if it is ever made).

The remaining members of this family, ALEPH-4, ALEPH-6, and ALEPH-7 have actually been prepared and they have all been entered here in Book II, under their own names.

#5 ALEPH-4; 2,5-DIMETHOXY-4-(i)-PROPYLTHIOAMPHETAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 2.0 g 2,5-dimethoxy-4-((i)-propylthio)benzaldehyde (see under 2C-T-4 for its synthesis) in 12 mL nitroethane was treated with 0.4 g anhydrous ammonium acetate and heated on the steam bath for 12 h, then allowed to stir for another 12 h at room temperature. The excess solvent/reagent was removed under vacuum leaving a residue as a heavy deep orange two-phase oily mass. This was brought into one phase with 2 mL MeOH and then, with continued stirring, everything spontaneously crystallized. This product was removed by filtration and, after washing sparingly with cold MeOH and air drying, yielded 2.0 g of 1-(2,5-dimethoxy-4-(i)-propylthiophenyl)-2-nitropropene as orange crystals with a mp of 96-98 °C. After recrystallization from 15 mL boiling 95% EtOH, filtering and air drying to constant weight, there was obtained 1.6 g of orange crystals with a mp of 99-100 °C.

A suspension of 1.0 g LAH in 100 mL warm THF was stirred under a N2 atmosphere and heated to a gentle reflux. To this there was added, dropwise, a solution of 1.2 g 1-(2,5-dimethoxy-4-(i)-propylthiophenyl)-2-nitropropene in 20 mL anhydrous THF. This mixture was held at reflux for 1 day, then stirred at room temperature for 2 days. There was then added, slowly and with caution, 1 mL of H2O, followed by 1 mL of 15% NaOH, and finally by another 3 mL of H2O. Stirring was continued until the reaction mixture became white and granular, then all solids were removed by filtration and the filter cake was washed with additional THF. The filtrate and washings were combined, and the solvent removed under vacuum to give 1.1 g of residue which was an almost white oil. This was dissolved in 6 mL IPA, neutralized with concentrated HCl (10 drops were required) and then diluted with 200 mL anhydrous Et2O. The resulting slightly turbid solution was clarified by filtration through a sintered glass filter, and the clear and slightly yellow filtrate was allowed to stand. A fine white crystalline product slowly separated over the next few h. This product, 2,5-dimethoxy-4-(i)-propylthioamphetamine hydrochloride (ALEPH-4) was removed by filtration, and after washing with Et2O and air drying, weighed 0.5 g and had a mp of 146-147 °C, with prior sintering at 144 °C.

DOSAGE: 7 - 12 mg.

DURATION: 12 - 20 h

QUALITATIVE COMMENTS: (with 7 mg) Things started off going downhill, initially negative with tension and depression, but as the momentum developed, so did the positive effect. My discomfort continued to develop, but I was struck by the visual beauty of the trees and the small stream that flowed off the mountain. My experience continued to grow, simultaneously, in both the negative and the positive direction. Physically I was uncomfortable and found my breathing difficult, but I acknowledged a rapture in the very act of breathing. All moved over to the plus side with time, and the evening was gorgeous. I have never seen the sky so beautiful. The only flaw was when I choked on some lemonade and it seemed to me I almost drowned. I have been extremely conscious of eating, drinking and swallowing ever since. I barely slept the whole night and awoke extremely tired. I felt that the experience continued for many days, and I feel that it is one of the most profound and deep learning experiences I have had. I will try it again, but will block out more time for it.

(with 8 mg) There was without question a plus two, but none of the edges of unreality that are part of LSD. The sounds that are just outside of my hearing are intriguing, and distract me from the eyes-closed imagery that is just barely possible with music while lying down. But, going outside, there were no obvious sources of the sounds that I heard. Could I drive? I suspect so. I took a shower and did just that Q I drove to San Francisco without incident, and walked amongst the many strange faces on the downtown streets.

(with 12 mg) The experience was very intense but completely under control except for a twenty minute period right in the middle of it. I had to get away from everything, from everyone. There was a sense of being surrounded and moved in upon that was suffocating. I was weighed down with everything Q physical, psychic, emotional. My clothes had to come off, my hair had to be released, my shoes went, I needed to move away from where I was, to somewhere else, to some new place, any new place, with the hope that my other old place wouldn't follow me. Pretty soon I found I was myself, I could breathe again, and I was OK. Rather sheepishly, I dressed and rejoined the group. The rest of the day was spectacular, but those few minutes were scary. What if I couldn't have escaped?S

EXTENSIONS AND COMMENTARY: Again, there are hints and suggestions of complexities. These, and several other reports, suggest some sensory confusion, and interpretive aspects that are to some extent threatening. There is an underlying suggestion of body toxicity. I know of no experiment that exceeded 12 milligrams and I would not be able to predict what might come forth at higher dosages. I personally choose not to try them.

#6 ALEPH-6 2,5-DIMETHOXY-4-PHENYLTHIOAMPHETAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: To a 300 mL three-neck round-bottom flask set up with a magnetic stirrer and protected with a N2 atmosphere, there was added 75 mL hexane, 3.5 g tetramethylethylenediamine, and 4.2 g p-dimethoxybenzene. The reaction mixture was cooled to 0 °C with an external ice bath, and there was then added 19 mL of 1.6 M butyllithium in hexane. With stirring, the reaction was brought up to room temperature, and there were produced loose, creamy solids. There was then added, as a solid and portionwise, 6.6 g diphenyldisulfide which resulted in an exothermic reaction and the production of a nearly clear solution. After stirring an additional 10 min, the reaction was quenched in 500 mL of dilute NaOH. The hexane phase was separated, and the aqueous phase extracted with 4x100 mL CH2Cl2 The organic extracts were combined, washed with dilute HCl and the solvents were removed under vacuum to provide 6.0 g of 2,5-dimethoxyphenyl phenyl sulfide as an impure amber oil. A small sample was saved for microanalysis and NMR, and the re-mainder converted to the corresponding benzaldehyde.

A mixture of 6.1 g POCl3 and 5.4 g N-methylformanilide was heated for 3 min on the steam bath, and then added to the remainder of the above-described 2,5-dimethoxyphenyl phenyl sulfide. The reaction became immediately a deep red and, after heating on the steam bath for 0.5 h, was dumped into a large quantity of H2O, producing a granular brown solid. This was removed by filtration, and washed sparingly with cold MeOH (the washes were saved). The resulting pale yellow solids were recrystallized from 20 mL boiling absolute EtOH providing, after cooling, filtration and air drying, 4.4 g of extremely pale yellow crystals of 2,5-dimethoxy-4-(phenylthio)benzaldehyde. This had a mp of 119-119.5 °C. All washes and mother liquors were combined, flooded with H2O and extracted with CH2Cl2. This solvent was removed under vacuum, and the residue (a viscous oil) was dissolved in a little EtOH which, on cooling in dry ice, gave 1.2 g of a second crop of the aldehyde, mp 117-119 °C. Recrystallization from 5 mL 95% EtOH gave an additional 0.4 g product with a mp of 118-119 °C. This mp was not improved by recry-stallization from cyclohexane. The NMR specrum was excellent, with OCH3 singlets (3H) at 3.45 and 3.80 ppm; ArH singlets at 6.28 and 7.26 ppm, the C6H5 as a broad peak centered at 7.50, and the CHO proton at 10.37 ppm.

A solution of 4.4 g 2,5-dimethoxy-4-(phenylthio)benzaldehyde in 32 mL nitroethane was treated with 0.8 g anhydrous ammonium acetate and heated on the steam bath for 21 h. The excess solvent/reagent was removed under vacuum, leaving a dark red oil as residue. After much diddling and fiddling around, this set up as a crystalline mass. These solids were ground under 20 mL cold MeOH and filtered, providing 5.3 g of the crude nitrostyrene as an orange crystalline residue product after air-drying. This was ground up under 10 mL MeOH, the insolubles collected by filtration, washed with a little MeOH, and air dried to provide 5.3 g crude 1-(2,5-dimethoxy-4-phenylthiophenyl)-2-nitropropene as yellow crystals, with a mp of 100-102 °C (with prior sintering at about 98 °C). This was recrystallized from 50 mL boiling 95% EtOH. After cooling in an ice bath, it was filtered, washed with EtOH, and air drying provided gold-yellow crystals with a mp of 105-106 °C. The proton NMR was excellent (in CDCl3).

A suspension of 2.0 g LAH in 100 mL refluxing THF, under an inert atmosphere and with good stirring, was treated with a solution of 3.5 g 1-(2,5-dimethoxy-4-phenylthiophenyl)-2-nitropropene in 20 mL anhydrous THF added dropwise at a rate that maintained the reflux. Heating and stirring were maintained for an additional 36 h, and then the reaction mixture was stirred at room temperature for an additional 24 h. There was added 2.0 mL H2O (dissolved in a little THF), followed by 2.0 mL 15% NaOH, and finally another 6.0 mL H2O. Stirring was continued until all formed solids had turned white. The reaction mixture was filtered, and the filter cake washed with THF. The filtrate and the washings were combined and the solvent removed under vacuum. The residue was 2.8 g of an oil that quite obviously contained some H2O. This was dissolved in 400 mL CH2Cl2, washed first with dilute NaOH and then with 4x150 mL 1N HCl. The organic phase was stripped of solvent under vacuum, yielding a pale amber oil that crystallized. This was ground first under Et2O, giving 3.4 g of a yellow solid. This was then ground under 10 mL of acetone, yielding 2.4 g of a white crystalline solid that darkened at 170 °C, sintered at 187 °C and had a mp of 191-193 °C. This was dissolved in 20 mL hot 95% EtOH, and diluted with 40 mL Et2O to provide a clear solution which, after a minute's scratching with a glass rod, deposited 2,5-dimethoxy-4-phenylthioamphetamine hydrochloride (ALEPH-6) as white solids. After filtration and air drying, the weight was 1.8 g, with a mp of 194-195 °C. The dilute HCl washes, after being made basic with aqueous NaOH and extraction with CH2Cl2 gave a trivial quantity of additional product.

DOSAGE: greater than 40 mg.

DURATION: probably long.

QUALITATIVE COMMENTS: (with 30 mg) I had an alert at the one hour point, and in another hour there was a clear 1+. There was a not well defined, gentle un-worldliness. And it was still there quite unchanged twelve hours later. In a group I find that all voices about me are of equal intensity and equal importance. But this is not at all distracting. This will be a long lived thing for sure.

(with 40 mg) I am into a subtle but real effect, no more than one plus, but real. I feel primed, but nothing more. It is not interfering with work, maybe even helping with it. After another hour of static one-plusness I decided to use it as a primer to LSD, using the usual 60 microgram quantity that is standard for primer studies. The combination showed definite synergism, with a rapid show of the LSD effects (within fifteen minutes) and an almost three plus effect. This is most unusual for the usual 60 microgram challenge amount. An absolutely delightful intoxication that had sufficiently descended towards baseline that I accepted a ride to a party that evening in Marin County to attend a poetry reading. There I felt myself at baseline and accepted (unusual for me) a little marijuana. And with the utmost quiet and delicacy, a rather incredible change of state took place. The most memorable event was the awareness of a clarinet playing somewhere, and the sneaky sounds from it actually coming along the carpet out of the dining room and into the hallway and through the door and into the room where I was, and all of them gathering at my feet like docile kittens waiting for me to acknowledge them. I did, non-verbally, and I was amazed at the many additional follow-up sounds that came from the same clarinet along the same twisty path along the floor and through the door and into my space, over what seemed to be the next million hours. I ended up with a marvelous collection of notes and phrases at my feet, and I felt somehow honored. My speech sounded OK to me, but I knew that it would be odd to the ears of others, so I kept quiet. A final measure of the weirdness of the ALEPH-6/LSD/Pot combination was the viewing of the Larkspur ferry at its dock, abandoned for the evening and with no one aboard it, and with all that clean, dry sleeping space going to waste with so many people sleeping on the streets these days. Once home, I slept soundly and for a long while. Incredible experience.

EXTENSIONS AND COMMENTARY: In a sense, this compound was a disappointment. The beauty of putting a whole new ring into an active structure is that it provides a marvelous vehicle for introducing new substituents in new arrangements. Had Aleph-6 been a cleanly active and potent compound, then the new phenyl group could have been made electronegative to varying degrees (with methoxy substitution for example) or electropositive to varying degrees (with trifluoromethyls or nitros) and this fine-tuning could have been extremely rewarding.

But this material had the earmarks of one of those forever threshold things. The 40 milligram experiment was hopelessly compromised, and nothing higher was ever scheduled or tried. The two-carbon homologue, 2,5-dimethoxy-4-phenylthiophenethylamine, or 2C-T-6, has never even been synthesized, let alone assayed.

#7 ALEPH-7; 2,5-DIMETHOXY-4-(n)-PROPYLTHIOAMPHETAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 2.6 g 2,5-dimethoxy-4-((n)-propylthio)benzaldehyde (see under 2C-T-7 for its synthesis) in 20 mL nitroethane and 0.5 g anhydrous ammonium acetate was heated on the steam bath overnight. The excess solvent/reagent was removed under vacuum leaving an orange oil as a residue that cry-stallized spontaneously. This crude product was recrystallized from 20 mL boiling MeOH to give, after cooling, filtering, and air drying, 2.4 g of 1-(2,5-dimethoxy-4-(n)-propylthiophenyl)-2-nitropropene as orange crystals. Its mp was 83-84 °C with prior sintering at 81 °C.

A suspension of 1.5 g LAH in 150 mL of warm anhydrous THF was stirred under an inert atmosphere and brought up to a gentle reflux. A solution of 2.3 g 1-(2,5-dimethoxy-4-(n)-propylthiophenyl)-2-nitropropene in 25 mL anhydrous THF was added dropwise at a rate that maintained the reflux. Heating and stirring were continued for 2 days, and then the reaction mixture was allowed to stir at room temperature for an additional 2 days. There was added 1.5 mL H2O (dissolved in 10 mL THF), followed by 1.5 mL 15% NaOH, and finally another 4.5 mL H2O. Stirring was continued until all the curdy solids had turned white. The reaction mixture was filtered, and the filter cake washed with slightly wet THF. The filtrate and the washings were combined, and the solvent removed under vacuum. The residue was about 2 mL of an amber colored oil that was dissolved in 200 mL CH2Cl2. This solution was washed with first dilute NaOH, and then with saturated brine. Removal of the solvent gave a pale amber oil that was dissolved in 10 mL IPA, neutralized with about 14 drops of concentrated HCl, and diluted with 200 mL anhydrous Et2O. The clear solution was decanted from a little gritty material, and then set aside to allow the formation of 2,5-dimethoxy-4-(n)-propylthioamphetamine hydrochloride (ALEPH-7) as fine white crystals. After filtration and air drying, there was obtained 1.8 g of an off-white powder.

DOSAGE: 4 - 7 mg.

DURATION: 15 - 30 h.

QUALITATIVE COMMENTS: (with 4 mg) At the second hour I had a paraesthetic twinge or two (all pins and needles), and then felt quite relaxed, quite willing to let this play itself out. In the evening my ears still feel 'popped' and there is a little bit of physical awareness. There is not much fun with this. The night following, I was unable to sleep and only dozed slightly, but I seemed to be OK the next day.

(with 6 mg) The alert was felt within a half hour, and then nothing more. Then, over the next two hours, there was the evolution of an extremely neutral state. I danced wildly to a record of Keith Jarrett, but somehow didn't care for his style. I fell apart emotionally, with tears and a feeling of total loss of everything. Everything was visible to me only in some strange wide-angle lens viewing. I went for a walk, a waste of time. I tried classical music, but only jazz was acceptable. It was a couple of days before I lost the residual strangeness feeling. Never again.

(with 7 mg) I did this alone, and in retrospect I wish I had not. Somewhere between the hours 2 and 3, I got to a full +++, and I was concerned that I saw the effects still developing. Where would it go now? There was no reality loss as with LSD, no shakes or shimmers, but an intense and profound +++ of something characterized only by the absence of extremes. And I am frightened because this is still deepening. A couple of calls to friends were not successful, but I found an ally in the Palo Alto area, and I told him I was coming to visit. My greater than one hour drive there was okay only because I had programmed every move ahead of time. In retrospect, to drive was completely stupid, and I certainly will never do it again, under any circumstances. But, there I was. I knew which lane I would be on, on the S.F. Bay Bridge, at every moment of my travels. The middle lane through the tunnel. The second from the left when descending into San Francisco. The white lane-marker stripes were zipping up past my lateral field of vision as I drove, those that were to my right zipped past my right eye, those to the left past my left eye. Like disturbed fruit flies leaving an over-ripe peach. But, as everything had been preprogrammed, there were no surprises. I made it successfully, and my baby-sitting friend probed, with a blend of curiosity, love, and envy, my uncaring state. And in the course of the next couple of hours, this state evolved into a friendly, familiar place. I was still fully +++, but now for the first time I was at peace with it. A fruit salad tasted heavenly. By midnight I was able to doze lightly, and the next day I was sure that there were some residual effects. The second evening's sleep repaired everything. The neutralness was something new to me. I don't like not caring. Was this the "Beth" state of the strange twenty minutes seen by SL in the ALEPH-4 experience?S

(with 7 mg) Strange, pleasant, unexciting, long-lasting. The induced state was characterized by: clear unintoxicated central field of vision, concentration but with the periphery sensed as being filled with a kind of strangeness, and also something sensed inside, at the back of the head. A feeling of something waiting to erupt, which never does. I had a faint touch of amusement, yet no part of the experience had the depth or richness of other compounds. No tremors. Slight visuals, but only when looked for. Hunger not present, but food tasted fine when eaten. Mildly pleasant but one would not take it again unless bored stiff.

EXTENSIONS AND COMMENTARY: This drug was the first definition of the term, Beth state.

There is something of the Fournier Transform in any and all drug experiments. A psychedelic drug experience is a complex combination of many signals going all at the same time. Something like the sound of an oboe playing the notes of the A-major scale. There are events that occur in sequence, such as the initial A, followed by B, followed by C-sharp and on and on. That is the chronology of the experience, and it can be written down as a series of perceived phenomena. The notes of the scale. Black quarter notes, with flags at the tops of their staffs, going up the page of music.

But within each of these single events, during the sounding of the note RA,S for example, there is a complex combination of harmonics being produced at the same time, including all components from the fundamental oscillation on up through all harmonics into the inaudible. This mixture defines the played instrument as being an oboe. Each component may be shared by many instruments, but the particular combination is the unique signature of the oboe.

This analogy applies precisely to the study of psychedelic drugs and their actions. Each drug has a chronology of effect, like the notes of the A-major scale. But there are many components of a drug's action, like the harmonics from the fundamental to the inaudible which, taken in concert, defines the drug. With musical instruments, these components can be shown as sine waves on an oscilloscope. One component, 22%, was a sine wave at a frequency of 1205 cycles, and a phase angle of +55°. But in psychopharmacology? There is no psychic oscillo-scope. There are no easily defined and measured harmonics or phase angles. Certainly, any eventual definition of a drug will require some such dissection into components each of which makes some contribution to the complex whole. The mental process may some day be defined by a particular combination of these components. And one of them is this Beth state. It is a state of uncaring, of anhe-donia, and of emotionlessness.

Many drugs have a touch of this Beth state, ALEPH-7 more than most. If a sufficient alphabet of effects (I am using the Alephs, Beths, Gimels, and Daleths of the Hebrew as token starters only) were to be accumulated and defined, the actions of new materials might someday be more exactly documented. Could depression, euphoria, and disinhibition for example, all be eventually seen as being made up of their component parts, each contributing in some measured way to the sum, to the human experience? The psychologists of the world would be ecstatic. And drugs such as ALEPH-7 might be useful in helping to define one of these parts.

#8 ARIADNE; 4C-DOM; BL-3912; DIMOXAMINE; 1-(2,5-DIMETHOXY-4-METHYLPHENYL)-2-AMINOBUTANE; 2,5-DIMETHOXY-a-ETHYL-4-METHYLPHENETHYLAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: In 50 mL of benzene there was dissolved 31.6 g 2,5-dimethoxy-4-methylbenzaldehyde (see recipe for 2C-D for its preparation), 20.2 mL 1-nitropropane, and 6 mL cyclohexylamine. This solution was held at reflux in a Dean Stark apparatus for 24 h, effectively removing the water of reaction. Upon cooling, there was deposited 19.6 g of 1-(2,5-dimethoxy-4-methylphenyl)-2-nitro-1-butene as brilliant orange crystals. The mp, after recrystallization from MeOH, was 114-115 °C and a second recrystallization increased the mp another 2 °C. Anal. (C13H17NO4) C,H,N.

A suspension of 12.5 g LAH in 600 mL anhydrous THF was stirred magnetically, and brought up to a reflux. To this there was added, dropwise, 15.0 g 1-(2,5-dimethoxy-4-methylphenyl)-2-nitro-1-butene dissolved in 150 mL THF. Refluxing was continued for 15 h and, after cooling, the excess hydride was decomposed by the addition of 12.5 mL H2O. The inorganic salts were made loose and granular by the addition of 12.5 mL 15% NaOH followed by an additional 37.5 mL H2O. These solids were removed by filtration, and the filter cake was washed with THF. The combined filtrate and washings were stripped of solvent under vacuum. The residue was dissolved in anhydrous Et2O, and treated with hydrogen chloride gas, yielding 1-(2,5-dimethoxy-4-methylphenyl)-2-aminobutane hydrochloride (ARIADNE) as white crystals which, after recrystallization from IPA, weighed 11.4 g and had a mp of 232.5-234.5 °C. Anal. (C13H22ClNO2) C,H,N,Cl. The racemic mixture was resolved into its optical isomers by the formation of salts with (+)-2'-nitrotartranilic acid (to give the RSS isomer) or with (+)-2'-chlorotartranilic acid (to give the RRS isomer). The RRS isomer can also be prepared by the reductive amination of 1-(2,5-dimethoxy-4-methylphenyl)-2-butanone (from the above nitrostyrene and elemental iron) with (+)-a-methyl benzylamine followed by the hydrogenolysis of the benzyl group.

DOSAGE: as psychedelic, unknown.

DURATION: short.

QUALITATIVE COMMENTS: (with 12 mg) I believe that my mood has distinctly improved, and my sleep that evening was excellent. This is physically benign.

(with 32 mg) There was some sort of threshold that lasted for a couple of hours.

(with 25 mg of the RRS isomer) There is the alert of a psychedelic, with none of the rest of the package. Perhaps a bit of paranoia. And by the fifth hour everything is largely gone.

EXTENSIONS AND COMMENTARY: How does one discover a new drug for a malady that does not exist in experimental animals? Drugs that interfere with sleep, or with appetite, or with some infecting bacterium, are naturals for animal screening, in that animals sleep, eat, and can be easily infected. But there are lots of syndromes that involve a state of mind, and these are uniquely human. Many of the psychopharmacological anti-this or anti-that agents address ailments such as anxiety, psychosis, paranoia, or depression, which are only known in man. So how does one discover a new drug in areas such as these? If one has in hand a drug that is known to be effective in one of these human ailments, an animal assay can be set up to give some measurable response to that specific drug, or a biochemical property can be rationalized as being related to a mechanism of action. And with the known drug as a calibration, and restricting your search to structurally related compounds, you can find structural relatives that give the same responses.

But how does one find a new class? One way is to kind of stumble into it as a side-line of human experimentation with new psychedelics. But it is really difficult to pick up the clues as to what will be a good anti-depressant if you are not depressed. This compound, to which I had given the name of ARIADNE as the first of my ten "classic ladies" (I'll say more about them later), was not really a stimulant of any kind, certainly it was not a psychedelic, and yet there was something there. It had been explored rather extensively as a potential psychotherapeutic ally by a friend of mine. He said that there seemed to be some value in a few of his patients who had some underlying depression, but not much of anything with the others. So, I decided to call it an anti-depressant. I had mentioned some of this history one time when I was giving an address at a conference on the East Coast, and my host (who happened to be the research director at a large pharmaceutical house) asked if I would send him a sample. His company did many animal tests, one of which showed that it was not hallucinogenic (a cat whose tail erected dramatically with DOM did nothing with ARIADNE) and another that showed re-motivation (some old maze-running monkeys who had decided not to run any more mazes changed their minds with ARIADNE).

So patents were obtained for the RRS isomer, the more effective isomer, covering its use for such things as the restoring of motivation in senile geriatric patients. And a tradename of Dimoxamine was assigned it, despite several voices that held out for Ariadnamine. But it didn't have what was needed to make it all the way to the commercial market

Many, many analogues of ARIADNE have been made, and for a variety of reasons. In the industrial world there is research backup carried out, not only for the discovery of new things, but also for patent protection of old things. Several dozen analogues of ARIADNE have been made and pharmacologically evaluated, and some of them have been put into the published literature. The major points of variation have been two: keep the 4-position methyl group intact, and make the variations on the alpha-carbon (propyl, butyl, dimethyl, phenyl, benzyl, phenethyl, etc. Q an extensive etc.) or: keep the alpha-position ethyl group intact and make the variations on the 4-position (chloro, iodo, methylthio, carboxy, etc. Q again, an extensive etc.).

Some of these analogues I had made, and sent in for animal screening. The high potency of DOB suggested the bromo-counterpart of ARIADNE. The making of this entailed the proteo counterpart, 1-(2,5-dimethoxyphenyl)-2-aminobutane. Reaction of 2,5-dimethoxybenzaldehyde with nitropropane in benzene in a Dean Stark apparatus with cyclohexylamine as a catalyst produced 1-(2,5-dimethoxyphenyl)-2-nitrobutene, which crystallized as orange crystals from MeOH with a mp of 47-47.5 °C. Anal. (C12H15NO4) C,H,N. This was reduced to the amine 1-(2,5-dimethoxyphenyl)-2-aminobutane with LAH in ether, and this gave a hydrochloride salt with a mp of 172-174 °C after recrystallization from acetonitrile. The free base of this compound was brominated in acetic acid to give 1-(2,5-dimethoxy-4-bromophenyl)-2-aminobutane which yielded a white hydrochloride salt with a mp of 204-206 °C following recrystallization from IPA. The isomeric non-brominated analogue, 1-(3,4-dimethoxyphenyl)-2-aminobutane was made and explored by the Chemical Warfare group at Edgewood Arsenal; its code number is EA-1322.

Several of the alpha-ethyl analogues of ARIADNE were N,N-dialkylated, and were target compounds for halogenation with radio-iodine or radio-fluorine, for evaluation as potential brain blood-flow indicators. In these studies. all examples followed a common flow diagram. The reaction of the appropriate benzaldehyde and nitropropane, using N,N-dimethylethylenediamine as a catalyst and following recrystallization from MeOH, gave the corresponding 1-aromatic-2-nitro-1-butene (the nitrostyrene) which, by reduction with elemental iron, gave the corresponding 2-butanone (which was distilled at about 0.3 mm/Hg). This led, by reductive amination with dimethylamine hydrochloride and sodium cyanoborohydride, to the corresponding N,N-dimethyl product which was distilled at about 0.3 mm/Hg and which, in no case, either formed a solid HCl salt or reacted with carbon dioxide from the air. From 2,4-dimethoxybenzaldehyde, the nitrostyrene appeared as yellow crystals, the ketone as a white oil, and the product N,N-dimethyl-1-(2,4-dimethoxyphenyl)-2-aminobutane as a white oil. From 2,5-dimethoxybenzaldehyde, the nitrostyrene formed bright yellow crystal, the ketone was an off-white oil, and the product N,N-dimethyl-1-(2,5-dimethoxyphenyl)-2-aminobutane was a white oil. From 3,5-dimethoxybenzaldehyde, the nitrostyrene formed pale yellow crystals that discolored on exposure to the light, the ketone was an off-white clear oil, and the product N,N-dimethyl-1-(3,5-dimethoxyphenyl)-2-aminobutane was a white oil. From 2,6-dimethoxybenzaldehyde, the nitrostyrene was obtained as orange crystals, and was not pursued further.

A number of ARIADNE analogues have been made, or at least started, purely to serve as probes into whatever new areas of psychopharmacological activity might be uncovered. One of these is a HOT compound, and one is a TOM compound, and a couple of them are the pseudo (or near-pseudo) orientations. The HOT analogue was made from the nitrostyrene precursor to ARIADNE itself, reduced not with LAH or AH (which would give the primary amine), but rather with sodium borohydride and borane dimethylsulfide. The product, 1-(2,5-dimethoxy-4-methylphenyl)-N-hydroxy-2-aminobutane hydrochloride, was a white crystalline material. The 5-TOM analogue got as far as the nitrostyrene. This was made from 2-methoxy-4-methyl-5-(methylthio)benzaldehyde (see under the 5-TOM recipe for its preparation) and nitropropane in acetic acid, and gave bright yellow crystals. The true pseudo-analogue is the 2,4,6-trimethoxy material based on TMA-6, which is the RrealS pseudo-TMA-2. The nitrostyrene from 2,4,6-trimethoxybenzaldehyde and nitropropane crystallized from MeOH/CH3CN as fine yellow crystals, and this was reduced with AH in cold THF to 1-(2,4,6-trimethoxyphenyl)-2-aminobutane which was a bright, white powder.

And the near-pseudo analogue?

First, what is near-pseudo? I have explained already that the "normal" world of substitution patterns is the 2,4,5. Everyone knows that that is the most potent pattern. But, the 2,4,6 is in many ways equipotent, and has been named the pseudo-stuff. The "real," or "true" pseudo-stuff. So what is the "near" pseudo-stuff? I am willing to bet that the rather easily obtained 2,3,6-trisubstitution pattern, and the much more difficult to obtain 2,3,5-substitution pattern, will produce treasures every bit as unexpected and remarkable as either the 2,4,5- or the 2,4,6- counterparts. These are neither "real" nor "pseudo," but something else, and I will find a name for them when the time comes, something weird from the Greek alphabet. And this will double again the range of possible exploration. The TMA-5 analogue mentioned came from 2,3,6-trimethoxybenzaldehyde and nitropropane using cyclohexylamine as a catalyst (yellow-orange solids) which was reduced to the amine with AH. This hydrochloride salt is an air-stable white powder. All of these materials remain unexplored.

Somewhere in the wealth of compounds implicit in the many structural variables possible (the normal versus the pseudo versus the near-pseudo patterns, coupled with the wide variety of promising substituents that can be placed on the 4-position, together with the availability of the the unexplored members of the Ten Classic Ladies harem), it would seem inescapable that interesting compounds will emerge.

Just what is this all about the ten "Classic Ladies?" In the chemical structure of DOM, there is a total of nineteen hydrogen atoms. Some of these are indistinguishable from others, such as the three hydrogen atoms on a methyl group. But there are exactly ten "types" of hydrogen atoms present. And, not having much, if any, intuition as to just why DOM was so powerful a psychedelic, I decided to systematically replace each of the ten unique hydrogens, one at a time of course, with a methyl group. And I planned to give the resulting materials the names of famous ladies, alphabetically, as you walk around the molecule.

ARIADNE was the first of these, the methyl for a hydrogen atom on the methyl group of the amphetamine chain. It was Ariadne who gave the long piece of thread to Theseus to guide him through the mazes of the Labyrinth so he could escape after killing the Minotaur. The record is fuzzy as to whether, after the successful killing, she went with him, or let him go on alone. A methyl group on the nitrogen atom produced BEATRICE. There is the legendary Beatrijs of the Dutch religious literature of the 14th century, and there is the Beatrice from Beatrice and Benedict (of Berlioz fame). But the one I had in mind was the lady from Florence whom Dante immortalized in the Divina Commedia, and she is entered under her own name in this footnote. Replacing the alpha-hydrogen of DOM with a methyl group would give the phentermine analogue which is named CHARMIAN. You may be thinking of Cleopatra's favorite attendant, but I was thinking of the sweet wife of a very dear friend of mine, a lady who has been in a state of gentle schizophrenia for some forty years now. The MDA analogue of CHARMIAN has been described in this foornote under the code name of MDPH. CHARMIAN, herself, has been synthesized and is of very much reduced potency in animals, as compared to DOM. It has not been tried in man as far as I know.

The two beta-hydrogen atoms of DOM are distinct in that, upon being replaced with methyl groups, one would produce a threo-isomer, and the other an erythro-isomer. I have named them DAPHNE (who escaped from Apollo by becoming a laurel tree which was, incidentally, named for her) and ELVIRA (who might not be too well known classically, but whose name has been attached to Mozart's 21st piano concerto as its slow movement was used as theme music for the movie Elvira Madigan). I don't know if either of this pair has been made Q I started and got as far as the cis-trans mixture of adducts betweeen nitroethane and 2,5-dimethoxy-4-methylacetophenone. Whoever finally makes them gets to assign the names. I had made and tested the corresponding homologues of DMMDA that correspond to these two ladies.

And there are five positions (2,3,4,5 and 6) around the aromatic ring, each of which either carries a hydrogen atom or a methyl group that has a hydrogen atom. There is the 2-methoxy group which can become a 2-ethoxy group to produce a compound called FLORENCE. Her name is the English translation of the Italian Firenze, a city that, although having a female name, has always seemed thoroughly masculine to me. There is the 3-hydrogen atom which can become a 3-methyl group to produce a compound called GANESHA. This is a fine elephant-headed Indian God who is the symbol of worldly wisdom and also has been seen as the creator of obstacles. Here I really blew it; the Classic Lady turned out to be a Classic Gentle-man; not even the name is feminine. There is the 4-methyl group which can become a 4-ethyl group to produce a compound called HECATE who presided over magic arts and spells. There is the 5-methoxy group which can become a 5-ethoxy group to produce a compound called IRIS, who is the Goddess of the rainbow. And there is the 6-hydrogen atom which can become a 6-methyl group to produce a compound called JUNO, who is pretty much a lady's lady, or should I say a woman's woman.

GANESHA, 2,5-dimethoxy-3,4-dimethylamphetamine has been made, and has proven to be an extraordinary starting point for a large series of potent phenethylamines and amphetamines which are described in this book. HECATE was given a synonym early in this process, and is now known as DOET (2,5-dimethoxy-4-ethylamphetamine). IRIS has also been entered under her name, and the other ethoxy homologue, FLORENCE, would be easily made based on the preparation of the phenethylamine analogue, 2CD-2ETO. Perhaps it has already been made somehow, somewhere, as I have noted that I have claimed its citrate salt as a new compound in a British patent. And, finally, JUNO (3,6-dimethoxy-2,4-dimethylamphetamine) has been made (from 2,5-dimethoxy-m-xylene, which was reacted with POCl3 and N-methylformanilide to the benzaldehyde, mp 53-54 °C, and to the nitrostyrene with nitroethane, mp 73-74 °C from cyclohexane, and to the final amine hydrochloride with LAH in THF). Rather amazingly, I have had JUNO on the shelf for almost 14 years and have not yet gotten around to tasting it.

#9 ASB; ASYMBESCALINE; 3,4-DIETHOXY-5-METHOXYPHENETHYLAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: To a solution of 32 g of 5-bromobourbonal in 150 mL DMF there was added 31 g ethyl iodide and 32 g of finely ground 85% KOH pellets. There was the formation of a purple color and a heavy precipitate. On gradual heating to reflux, the color faded to a pale yellow and the precipitate dissolved over the course of 1 h. The heating was continued for an additional 1 h. The reaction mixture was added to 1 L H2O, and extracted with 2x150 mL of petroleum ether. The extracts were pooled, washed with 2x200 mL 5% NaOH and finally with H2O. After drying over anhydrous K2CO3 the solvents were removed under vacuum to yield 36 g of crude 3-bromo-4,5-diethoxybenzaldehyde as an amber liquid. This was used without purification for the following step. Distillation at 105-115 °C at 0.3 mm/Hg provided a white sample which did not crystallize. Anal. (C11H13BrO3 ) C,H.

A mixture of 36 g 3-bromo-4,5-diethoxybenzaldehyde and 17 mL cyclohexylamine was heated with an open flame until it appeared to be free of H2O. The residue was put under a vacuum (0.4 mm/Hg) and distilled at 135-145 °C, yielding 42 g 3-bromo-N-cyclohexyl-4,5-diethoxybenzylidenimine as a viscous light greenish oil. This slowly set to a crystalline glass with a mp of 60-61 °C. Recrystallization from hexane gave a white crystalline product without any improvement in the mp. Anal. (C17H24BrNO2) C,H. This is a chemical intermediate to a number of active bases, taking advantage of the available bromine atom. This can be exchanged with a sulfur atom (leading to 5-TASB and 3-T-TRIS) or with an oxygen atom as described below.

A solution of 18 g 3-bromo-N-cyclohexyl-4,5-diethoxybenzylidenimine in 250 mL anhydrous Et2O was placed in an atmosphere of He, stirred magnetically, and cooled with an external dry ice/acetone bath. Then 36 mL of a 1.5 M solution of butyllithium in hexane was added over 2 min, producing a clear yellow solution. This was stirred for 10 min. There was then added 30 mL of butyl borate at one time, the stirring continued for 5 min. The stirred solution was allowed to return to room temperature. There was added 150 mL of saturated aqueous ammonium sulfate. The Et2O layer was separated, and the aqueous phase extracted with another 75 mL Et2O. The combined organic phases were evaporated under vacuum. The residue was dissolved in 100 mL MeOH, diluted with 20 mL H2O, and then treated with 15 mL 35% H2O2 added over the course of 2 min. This mildly exothermic reaction was allowed to stir for 15 min, then added to 500 mL H2O. This was extracted with 2x100 mL CH2Cl2 and the solvent removed under vacuum. The residue was suspended in 150 mL dilute HCl and heated on the steam bath for 0.5 h. Stirring was continued until the reaction was again at room temperature, then it was extracted with 2x75 mL CH2Cl2. These extracts were pooled and extracted with 3x100 mL dilute aqueous KOH. The aqueous extracts were washed with CH2Cl2, reacidified with HCl, and reextracted with 2x75 mL CH2Cl2. These extracts were pooled, and the solvent removed under vacuum to yield a brown residue. This was distilled at 107-127 °C at 0.4 mm/Hg to yield 8.3 g of 3,4-diethoxy-5-hydroxybenzaldehyde as an oil that set to a tan solid. Recrystallization from cyclohexane gave a white product with a mp of 70.5-71.5 °C. Anal. (C11H14O4) C,H.

A solution of 8.3 g of 3,4-diethoxy-5-hydroxybenzaldehyde and 3.0 g KOH in 75 mL EtOH was treated with 5 mL methyl iodide and stirred at room temperature for 5 days. The reaction mixture was added to 400 mL H2O and extracted with 2x50 mL CH2Cl2. The extracts were pooled, washed with 2x150 mL dilute NaOH, and the solvent removed under vacuum. The residual oil was distilled at 95-110 °C at 0.3 mm/Hg to yield 8.2 g of 3,4-diethoxy-5-methoxybenzaldehyde as a pale yellow liquid. This product was a crystalline solid below 20 °C but melted upon coming to room temperature. It was analyzed, and used in further reactions as an oil. Anal. (C12H16O4) C,H.

To a solution of 6.4 g 3,4-diethoxy-5-methoxybenzaldehyde in 40 mL nitromethane there was added about 0.5 g anhydrous ammonium acetate, and this was held at reflux for 1 h. The excess solvent/reagent was removed under vacuum, producing a red oil which set up to crystals. These were recrystallized from 40 mL boiling MeOH to yield 3.0 g of 3,4-diethoxy-5-methoxy-'-nitrostyrene as yellow plates, with a mp of 89-90 °C. Anal. (C13H17NO5) C,H.

A solution of 3.0 g LAH in 150 mL anhydrous THF under He was cooled to 0 °C and vigorously stirred. There was added, dropwise, 2.1 mL of 100% H2SO4, followed by the dropwise addition of a solution of 3.5 g 3,4-diethoxy-5-methoxy-'-nitrostyrene in 30 mL anhydrous THF, over the course of 10 min. The addition was exothermic. The mixture was held at reflux on the steam bath for 30 min. After cooling again, the excess hydride was destroyed with IPA, followed by the addition of 10% NaOH sufficient to covert the aluminum oxide to a white, granular form. This was removed by filtration, the filter cake washed with IPA, the mother liquor and filtrates combined, and the solvents removed under vacuum to provide a yellow oil. This residue was added to 100 mL dilute H2SO4 producing a cloudy suspension and some yellow insoluble gum. This was washed with 2x75 mL CH2Cl2. The aqueous phase was made basic with 25% NaOH, and extracted with 2x75 mL CH2Cl2. The solvent was removed from these pooled extracts and the residue distilled at 110-135 °C at 0.4 mm/Hg to provide 2.0 g of a colorless liquid. This was dissolved in 7 mL IPA, neutralized with about 40 drops of concentrated HCl, followed by 50 mL anhydrous Et2O with stirring. The initially clear solution spontaneously deposited a white crystalline solid. This was diluted with an additional 30 mL Et2O, let stand for 1 h, and the solids removed by filtration. After Et2O washing, the product was air-dried to yield 1.25 g of 3,4-diethoxy-5-methoxyphenethylamine hydrochloride (ASB) with a mp of 142-143 °C. Anal. (C13H22ClNO3) C,H.

DOSAGE: 200 - 280 mg.

DURATION: 10 - 15 h.

QUALITATIVE COMMENTS: (with 240 mg) There was a pleasant and easy flow of day-dreaming thoughts, quite friendly and somewhat erotic. There was a gentle down-drift to my starting baseline mental status by about midnight (I started at 9:00 AM). I never quite made it to a +++, and rather regretted it.

(with 280 mg) The plateau of effect was evident by hour two, but I found the experience lacking the visual and interpretive richness that I had hoped for. Sleep was very fitful after the effects had largely dropped Q it was hard to simply lie back and relax my guard Q and even while being up and about the next day I felt a residual plus one. Over all, there were few if any of the open interactions of 2C-B or LSD. Some negative side seemed to be present.

(with 280 mg) The entire session was, in a sort of way, like being in a corridor outside the lighted halls where a beautiful mescaline experience is taking place, sensing the light from behind a grey door, and not being able to find my way in from the dusky underside passageways. This is sort of a gentle sister of mescaline, but with a tendency to emphasize (for me, at this time) the negative, the sad, the struggling. Sleep was impossible before the fifteenth hour. When I tried, I got visions of moonlight in the desert, with figures around me which were the vampire-werewolf aspect of the soul, green colored and evil. I had to sit quietly in the living room and wait patiently until they settled back to wherever they belonged and stopped trying to take over the scene. During the peak of the experience, my pulse was thready, somewhat slowed, and uneven. There was a faint feeling of physical weirdness.

EXTENSIONS AND COMMENTARY: This specific amine was a target for a single study in cats many years ago, in Holland, using material obtained from Hoffman La Roche in Basel. Their findings are hard to evaluate, in that 200 milligrams was injected into a 3.75 kilogram cat (53 mg/Kg), or about twice the dosage that they used in their studies with metaescaline. Within 5 minutes there were indications of catatonia, and within a half hour the animal was unable to walk. This condition persisted for two days, at which time the animal died. Although this dose was many times that used in man, perhaps hints of the physical unease and long action are there to be gleaned. The consensus from over a half dozen experiments is that there is not enough value to be had to offset the body load experienced.

A comment is needed on the strange name asymbescaline° In the marvelous world of chemical nomenclature, bi- (or di-) usually means two of something, and tri- and tetra- quite reasonably mean three and four of something. But occasionally there can be an ambiguity with bi (or tri or tetra) in that bi some-thing-or-other might be two something-or-others hooked together or it might be two things hooked onto a something-or-other. So, the former is called bi- and the latter is called bis-. This compound is not two escalines hooked together (bi-escaline) but is only one of them with two ethyl groups attached (bis-escaline or bescaline). And since there are two ways that this can be done (either symmetrically or asymmetrically) the symmetric one is called symbescaline (or SB for short) and this one is called asymbescaline (or ASB for short). To complete the terminology lecture, the term tri- becomes tris- (the name given for the drug with all three ethoxy groups present in place of the methoxys of mescaline) and the term tetra- mutates into the rather incredible tetrakis-°

#10 B; BUSCALINE; 4-(n)-BUTOXY-3,5-DIMETHOXYPHENETHYLAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 5.8 g of homosyringonitrile (see under E for preparation), 100 mg decyltriethylammonium iodide, and 11 g n-butyl bromide in 50 mL anhydrous acetone was treated with 6.9 g finely powdered anhydrous K2CO3 and held at reflux for 10 h. An additional 6 g of n-butyl bromide was added to the mixture, and the refluxing continued for another 48 h. The mixture was filtered, the solids washed with acetone, and the solvent from the combined filtrate and washes removed under vacuum. The residue was suspended in acidified H2O, and extracted with 3x175 mL CH2Cl2. The pooled extracts were washed with 2x50 mL 5% NaOH, once with dilute HCl, and then stripped of solvent under vacuum giving 13.2 g of a deep yellow oil. This was distilled at 132-145 °C at 0.2 mm/Hg to yield 5.0 g of 4-(n)-butyloxy-3,5-dimethoxyphenylacetonitrile as a pale yellow oil which set up to crystals spontaneously. The mp was 42-43 °C. Anal. (C14H19NO3) C H N.

A solution of AH was prepared by the cautious addition of 0.67 mL of 100% H2SO4 to 25 mL of 1.0 M LAH in THF, which was being vigorously stirred under He at ice bath temperature. A total of 4.9 g of 4-(n)-butyloxy-3,5-dimethoxyphenylacetonitrile was added as a solid over the course of 10 min. Stirring was continued for another 5 min, then the reaction mixture was brought to reflux on the steam bath for another 45 min. After cooling again to room temperature, IPA was added to destroy the excess hydride (about 5 mL) followed by 10 mL of 15% NaOH which was sufficient to make the aluminum salts loose, white, and filterable. The reaction mixture was filtered, the filter cake washed with IPA, and the mother liquor and washes combined and the solvent removed under vacuum to yield an amber oil. This residue was treated with dilute H2SO4 which generated copious solids. Heating this suspension effected solution, and after cooling, all was washed with 3x50 mL CH2Cl2. The aqueous phase was made basic with aqueous NaOH, and the product extracted with 2x100 mL CH2Cl2. The extracts were evaporated to a residue under vacuum, and this was distilled at 128-138 °C at 0.5 mm/Hg yielding 3.8 g of a colorless oil. This was dissolved in 40 mL IPA, neutralized with concentrated HCl (about 55 drops required) and, with vigorous stirring, 80 mL of anhydrous Et2O was added which produced fine white plates. After standing for several h, the product was filtered, washed with 20% IPA in Et2O, and finally with Et2O. Air drying yielded 3.9 g of 4-(n)-butyloxy-3,5-dimethoxyphenethylamine hydrochloride (B) with a mp of 152-153 °C. An analytical sample melted at 155-157 °C. Anal. (C14H24ClNO3) C,H,N.

DOSAGE: greater than 150 mg.

DURATION: several hours.

QUALITATIVE COMMENTS: (with 120 mg) There is a strange taste, not really bitter, it does not linger. The slight change of baseline has certainly disappeared by the eighth hour. No noticeable changes in either the visual or the auditory area.

(with 150 mg) Throughout the experiment it was my impression that whatever effects were being felt, they were more in body than mind. The body load never mellowed out, as it would have with mescaline, after the first hour or two. Mental effects didn't develop in any interesting way. I was aware of brief heart arrhythmia. Tummy was uncomfortable, off and on, and there was light diarrhea. Even as late as the fifth hour, my feet were cold, and the whole thing left me with a slightly uncomfortable, 'Why did I bother?' feeling.

EXTENSIONS AND COMMENTARY: There is a jingle heard occasionally in chemical circles, concerning the homologues of methyl. It goes, "There's ethyl and propyl, but butyl is futile." And to a large measure this is true with the 4-position homologues of mescaline. This butyl compound, B or Buscaline, had originally been patented in England in 1930 without any physical or pharmacological description, and the few physical studies that had involved it (lipophilic this and serotonin that) suggested that it was less active than mescaline.

In principle, the 5-, the 6-, the 7- and the on-up homologues might be called amylescaline (possibly pentescaline?), hexescaline, heptescaline (possibly septescaline), and God-knows-what-scaline. They would certainly be easily makeable, but there would be little value that could be anticipated from nibbling them. In keeping with the name B (for butoxy), these would be known as A (for amyloxy, as the use of a P could confuse pentoxy with propoxy), as H (for hexyloxy, but careful; this letter has been used occasionally for DMPEA, which is Homopiperonylamine), and as S (the H for heptyloxy has been consumed by the hexyloxy, so let's shift from the Greek hepta to the Latin septum for the number seven). It seems most likely that the toxic symptoms that might well come along with these phenethylamines would discourage the use of the dosage needed to affect the higher centers of the brain. The same generally negative feeling applies to the amphetamine counterparts 3C-B, 3C-A, 3C-H and 3C-S.

A brief reiteration of the 2C-3C nomenclature, to avoid a possible misunderstanding. The drug 2C-B is so named in that it is the two-carbon chain analogue of the three-carbon chain compound DOB. The drug 3C-B is so named because it is the three-carbon chain analogue of the two-carbon chain compound Buscaline, or more simply, B. There is no logical connection whatsoever, either structural or pharmacological, between 2C-B and 3C-B.

#11 BEATRICE; N-METHYL-DOM; 2,5-DIMETHOXY-4,N-DIMETHYLAMPHETAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A fused sample of 5.0 g of white, crystalline free base 2,5-dimethoxy-4-methylamphetamine, DOM, was treated with 10 mL ethyl formate, and held at reflux on the steam bath for several h. Removal of the solvent gave 5.5 g of a white solid, which could be recrystallized from 15 mL MeOH to give 3.8 g of fine white crystals of 2,5-dimethoxy-N-formyl-4-methylamphetamine. An analytical sample from ethyl formate gave granular white crystals.

To a stirred suspension of 4.0 g LAH in 250 mL anhydrous Et2O at reflux and under an inert atmosphere, there was added, by the shunted Soxhlet technique, 4.2 g of 2,5-dimethoxy-N-formyl-4-methylamphetamine as rapidly as its solubility in hot Et2O would allow. The mixture was held at reflux for 24 h and then stirred at room temperature for several additional days. The excess hydride was destroyed with the addition of dilute H2SO4 (20 g in 500 mL water) followed by the additional dilute H2SO4 needed to effect a clear solution. The Et2O was separated, and the aqueous phase extracted with 100 mL Et2O and then with 2x250 mL CH2Cl2. Following the addition of 100 g potassium sodium tartrate, the mixture was made basic with 25% NaOH. The clear aqueous phase was extracted with 3x250 mL CH2Cl2 These extracts were pooled, and the solvent removed under vacuum. The residual amber oil was dissolved in 400 mL anhydrous Et2O, and saturated with hydrogen chloride gas. The white crystals that formed were removed by filtration, washed with Et2O, and air dried to constant weight. There was obtained 4.2 g of product with a mp of 131.5-133.5 °C. This product was recrys-tallized from 175 mL boiling ethyl acetate to give 3.5 g 2,5-dimethoxy-4,N-di-methylamphetamine hydrochloride (BEATRICE) as pale pink crystals with a mp of 136-137 °C. A sample obtained from a preparation that employed the methyl sulfate methylation of the benzaldehyde adduct of DOM had a mp of 125-126 °C and presented a different infra-red spectrum. It was, following recrystallization from ethyl acetate, identical to the higher melting form in all respects.

DOSAGE: above 30 mg.

DURATION: 6 - 10 h.

QUALITATIVE COMMENTS: (with 20 mg) There was a gentle and demanding rise from the one to the three hour point that put me into an extremely open, erotic, and responsive place. I had to find a familiar spot to orient myself, and the kitchen served that need. As the experience went on, it showed more and more of a stimulant response, with tremor, restlessness, and a bit of trouble sleeping. But there was no anorexia° An OK experience.

(with 30 mg) There is a real physical aspect to this, and I am not completely happy with it. There is diarrhea, and I am restless, and continuously aware of the fact that my body has had an impact from something. The last few hours were spent in talking, and I found myself still awake some 24 hours after the start of the experiment. The mental was not up there to a +++, and yet the physical disruption was all that I might care to weather, and exceeds any mental reward. When I did sleep, my dreams were OK, but not rich. Why go higher?S

EXTENSIONS AND COMMENTARY: This is another example of the N-methyl homologues of the psychedelics. None of them seem to produce stuff of elegance. It is clear that the adding of an N-methyl group onto DOM certainly cuts down the activity by a factor of ten-fold, and even then results in something that is not completely good. Three milligrams of DOM is a winner, but even ten times this, thirty milligrams of N-methyl-DOM, is somewhat fuzzy. In the rabbit hyperthermia studies, this compound was some 25 times less active than DOM, so even animal tests say this is way down there in value. This particular measure suggests that the active level in man might be 75 milligrams. Well, maybe, but I am not at all comfortable in trying it at that level. In fact I do not intend to explore this any further whatsoever, unless there is a compelling reason, and I see no such reason. For the moment, let us leave this one to others, who might be more adventurous but less discriminating.

In browsing through my notes I discovered that I had made another N-substitution product of DOM. Efforts to fuse free-base DOM with the ethyl cyclopropane carboxylate failed, but the reaction between it and the acid chloride in pyridine gave the corresponding amide, with a mp of 156-157 °C from MeOH. Anal. (C16H23NO3) C,H,N. This reduced smoothly to the corresponding amine, N-cyclopropyl-2,5-dimethoxy-4-methylamphetamine which formed a hydrochloride salt melting at 153-156 °C. I can't remember the reasoning that led to this line of synthesis, but it must not have been too exciting, as I never tasted the stuff.

#12 BIS-TOM; 4-METHYL-2,5-bis-(METHYLTHIO)AMPHETAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 9.0 g 2,5-dibromotoluene in 50 mL petroleum ether was magnetically stirred under a He atmosphere. To this there was added 50 mL of a 1.6 M hexane solution of butyllithium, and the exothermic reaction, which produced a granular precipitate, was allowed to stir for 12 h. The mixture was cooled to 0 °C and there was then added 7.5 g dimethyldisulfide. There was a heavy precipitate formed, which tended to become lighter as the addition of the disulfide neared completion. After 20 min additional stirring, the reaction mixture was poured into H2O that contained some HCl. The phases were separated and the aqueous phase extracted with 50 mL Et2O. The organic phase and extract were combined, washed with dilute NaOH, and then with H2O. After drying over anhydrous K2CO3, the solvent was removed under vacuum and the residue distilled to give a fraction that boiled at 75-85 °C at 0.3 mm/Hg and weighed 5.3 g. This was about 80% pure 2,5-bis-(methylthio)toluene, with the remainder appearing to be the monothiomethyl analogues. A completely pure product was best obtained by a different, but considerably longer, procedure. This is given here only in outline. The phenolic OH group of 3-methyl-4-(methylthio)phenol was converted to an SH group by the thermal rearrangement of the N,N-dimethylthioncarbamate. The impure thiophenol was liberated from the product N,N-dimethylthiolcarbamate with NaOH treatment. The separation of the phenol/thiophenol mixture was achieved by a H2O2 oxidation to produce the intermediate 3-methyl-4-methylthiophenyldisulfide. This was isolated as a white crystalline solid from MeOH, with a mp of 78-79 °C. Anal. (C16H18S4) C,H. It was reduced with zinc in acetic acid, and the resulting thiophenol (a water-white liquid which was both spectroscopically and microanalytically correct) was methylated with methyl iodide and KOH in MeOH to give the desired product, 2,5-bis-(methylthio)toluene, free of any contaminating mono-sulfur analogues.

A solution of 3.9 g of 2,5-bis-(methylthio)toluene in 20 mL acetic acid was treated with a crystal of iodine followed by the addition of 3.5 g elemental bromine. This mixture was heated on the steam bath for 1 h, which largely discharged the color and produced a copious evolution of HBr. Cooling in an ice bath produced solids that were removed by filtration. Recrystallization from IPA gave 1.9 g of 2,5-bis-(methylthio)-4-bromotoluene as a white crystalline solid with a mp of 133-134 °C. Anal. (C9H11BrS2) C,H. An alternate synthesis of this intermediate was achieved from 1,4-dibromobenzene which was converted to the 1,4-bis-(methylthio)benzene (white crystals with a mp of 83.5-84.5 °C) with sodium methylmercaptide in hexamethylphosphoramide. This was dibrominated to 2,5-dibromo-1,4-bis-(methylthio)benzene in acetic acid (white platelets from hexane melting at 195-199 °C). This, in Et2O solution, reacted with BuLi to replace one of the bromine atoms with lithium, and subsequent treatment with methyl iodide gave 2,5-bis-(methylthio)-4-bromotoluene as an off-white solid identical to the above material (by TLC and IR) but with a broader mp range.

A solution of 2.4 g 2,5-bis-(methylthio)-4-bromotoluene in 100 mL anhydrous Et2O, stirred magnetically and under a He atmosphere, was treated with 10 mL of a 1.6 M solution of butyllithium in hexane. After stirring for 10 min there was added 2.5 mL N-methylformanilide which led to an exothermic reaction. After another 10 min stirring, the reaction mixture was added to 100 mL dilute HCl, the phases were separated, and the aqueous phase extracted with 2x50 mL Et2O. The combined organic phase and extracts were dried over anhydrous K2CO3, and the solvent removed under vacuum. The partially solid residue was distilled at 140-150 °C at 0.2 mm/Hg to give a crystalline fraction that, after recrystallization from 15 mL boiling IPA gave 2,5-bis-(methylthio)-4-methylbenzaldehyde as a yellow-brown solid which weighed 1.1 g and had a mp of 107-109 °C. An analytical sample from MeOH melted at 110-111 °C with an excellent IR and NMR. Anal. (C10H12OS2) C,H. An alternate synthesis of this aldehyde employs the 2,5-bis-(methylthio)toluene described above. A CH2Cl2 solution of this substituted toluene containing dichloromethyl methyl ether was treated with anhydrous AlCl3, and the usual workup gave a distilled fraction that spontaneously crystallized to the desired aldehyde but in an overall yield of only 11% of theory.

To a solution of 0.5 g 2,5-bis-(methylthio)-4-methylbenzaldehyde in 15 mL nitroethane there was added 0.15 g anhydrous ammonium acetate and the mixture was heated on the steam bath for 1 h. The excess solvent was removed under vacuum and the residue was dissolved in 10 mL boiling MeOH. This solution was decanted from a little insoluble residue, and allowed to cool to ice bath temperature yielding, after filtering and drying to constant weight, 0.55 g of 1-[2,5-bis-(thiomethyl)-4-methylphenyl]-2-nitropropene as pumpkin-colored crystals with a mp of 90-91 °C. This was not improved by recrystallization from EtOH. Anal. (C12H15NO2S2) C,H.

A cooled, stirred solution of 0.5 g LAH in 40 mL THF was put under an inert atmosphere, cooled to 0 °C with an external ice bath, and treated with 0.42 mL 100% H2SO4, added dropwise. A solution of 0.5 g 1-[2,5-bis-(thiomethyl)-4-methylphenyl]-2-nitropropene in 20 mL anhydrous THF was added over the course of 5 min, and the reaction mixture held at reflux for 30 min on the steam bath. After cooling again to ice temperature, the excess hydride was destroyed by the addition of IPA and the inorganics were converted to a loose, white filterable form by the addition of 1.5 mL 5% NaOH. These solids were removed by filtration and the filter cake was washed with 2x50 mL IPA. The combined filtrate and washings were stripped of solvent under vacuum to give a residue that was a flocculant solid. This was suspended in dilute H2SO4 and extracted with 2x50 mL CH2Cl2, and the combined organics extracted with 2x50 mL dilute H3PO4. The aqueous extracts were made basic, and the product removed by extraction with 2x75 mL CH2Cl2. After removal of the solvent under vacuum, the residue was distilled at 126-142 °C at 0.2 mm/Hg to give 0.2 g of product which crystallized in the receiver. This was dissolved in 1.5 mL hot IPA, neutralized with 4 drops of concentrated HCl, and diluted with 3 mL anhydrous Et2O to give, after filtering and air drying, 0.2 g. of 2,5-bis-(methylthio)-4-methylamphetamine hydrochloride (BIS-TOM) as white crystals with a mp of 228-229 °C. Anal. (C12H20ClNS2) C,H.

DOSAGE: greater than 160 mg.

DURATION: unknown.

QUALITATIVE COMMENTS: (with 160 mg) I was vaguely aware of something in the latter part of the afternoon. A suggestion of darting, physically (when going to sleep), but nothing at the mental level. This is as high as I will go.

EXTENSIONS AND COMMENTARY: It is reasonable, in retrospect, to accept that BIS-TOM is not an active compound. The replacement of the 2-position oxygen of DOM with a sulfur atom (to give 2-TOM) dropped the potency by a factor of 15x, and the replacement of the 5-position oxygen with a sulfur atom (to give 5-TOM) dropped the potency by a factor of about 10x. It would be a logical calculation that the replacement of both oxygen atoms with sulfur might drop the potency by a factor of 150x. So, with DOM being active at maybe 5 milligrams, a logical prediction of the active level of BIS-TOM would be 750 milligrams. And maybe this would be the right level, but with the hints of neurological disturbance that seemed to be there at 160 mg, there was no desire to go up by a factor of five again. The rewards would simply not be worth the risks.

The 2-carbon analogue, 2C-BIS-TOM, was prepared from the intermediate aldehyde above, first by reaction with nitromethane to give the nitrostyrene as tomato-colored crystals from EtOAc, mp 145-146 °C. Anal. (C11H13NO2S2) C,H. This was reduced with AH to give 2,5-bis-(methylthio)-4-methylphenethylamine hydrochloride as ivory-colored crystals with a mp of 273-277 °C.

Although there are many interesting psychedelic drugs with sulfur atoms in them (the TOMUs, the TOETUs, the ALEPH's and all of the 2C-TUs), there just aren't many that contain two sulfur atoms. BIS-TOM bombed out, and 2C-BIS-TOM remains untried, but will probably also fail, as the phenethylamines are rarely more potent than the corresponding amphetamines. This leaves 2C-T-14 as the remaining hope, and its synthesis is still underway.

#13 BOB; '-METHOXY-2C-B; 4-BROMO-2,5-'-TRIMETHOXYPHENETHYLAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: To a vigorously stirred suspension of 2.1 g 4-bromo-2,5-dimethoxy-'-nitrostyrene [from 4-bromo-2,5-dimethoxybenzaldehyde and nitromethane in acetic acid with ammonium acetate as a catalyst, mp 157-158 °C, anal. (C10H10BrNO4) C,H] in 20 mL anhydrous MeOH, there was added a solution of sodium methoxide in MeOH (generated from 0.5 g metallic sodium in 20 mL anhydrous MeOH). After a few min there was added 10 mL acetic acid (no solids formed) followed by the slow addition of 50 mL of H2O. A cream-colored solid was produced, which was removed by filtration and washed well with H2O. After air drying the product, 1-(4-bromo-2,5-dimethoxyphenyl)-1-methoxy-2-nitroethane, weighed 2.0 g. An analytical sample from MeOH was off-white in color and had a mp of 119-120 °C. Anal. (C11H14BrNO5) C,H.

A solution of LAH (15 mL of 1 M solution in THF) was diluted with an equal volume of anhydrous THF, and cooled (under He) to 0 °C with an external ice bath. With good stirring there was added 0.38 mL 100% H2SO4 dropwise, to minimize charring. This was followed by the addition of 1.0 g 1-(4-bromo-2,5-dimethoxyphenyl)-1-methoxy-2-nitroethane as a solid over the course of 5 min. After an hour of stirring at 0 °C, the temperature was brought up to a gentle reflux on the steam bath for 30 min. There was no vigorous exothermic reaction seen, unlike that with the syntheses of BOD, BOH and BOM. The reaction mixture was cooled again to 0 °C, and the excess hydride was destroyed by the cautious addition of IPA. This was followed by sufficent dilute aqueous NaOH to give a white granular character to the oxides, and to assure that the reaction mixture was basic. The reaction mixture was filtered, and the filter cake washed first with THF fol-lowed by IPA. The combined filtrate and washings were stripped of solvent under vacuum and dissolved in dilute H2SO4, with the apparent generation of yellow solids. This was washed with 2x50 mL CH2Cl2, and the aqueous phase made basic with NaOH. This was extracted with 2x50 mL CH2Cl2, and the pooled extracts were stripped of solvent under vacuum. The residue was distilled at 130-150 °C at 0.2 mm/Hg to give 0.2 g of product as a clear white oil. This fraction was dissolved in 10 mL IPA, and neutralized with 4 drops concentrated HCl. The addition of 30 mL anhydrous Et2O allowed the formation of 4-bromo-2,5,'-trimethoxyphenethylamine hydrochloride (BOB) as a fine white crystalline product. This was removed by filtration, washed with Et2O, and air dried. There was obtained 0.1 g white crystals with a mp of 187-188 °C. Anal. (C11H17BrClNO3) C,H.

DOSAGE: 10 - 20 mg.

DURATION: 10 - 20 h.

QUALITATIVE COMMENTS: (with 10 mg) I don't know if it was me this day, or if it was the chemical, but I got into a granddaddy of a paranoid, sociopathic snit, without feeling and without emotion. I was indifferent to everything. Later on, there was some improvement, with body tingling (good, I'm pretty sure) and a sense of awareness (good, I guess) but I still canceled my evening dinner company. All in all, pretty negative.

(with 10 mg) I had to get away and into myself, so I weeded in the vegetable garden for almost an hour. Then I lay down in the bedroom, and enjoyed a magnificent vegetable garden, in Southern France, in my mind's eye. An extraordinary zucchini. And the weeds had all been magically pulled. In another couple of hours a neurological over-stimulation became apparent, and I spent the rest of the day defending myself. In the evening, I took 100 milligrams phenobarbital which seemed to smooth things just enough. Too bad. Nice material, otherwise.

(with 15 mg) The erotic was lustful, but at the critical moment of orgasm, the question of neurological stability became quite apparent. Does one really let go? Everything seemed a bit irritable. The tinnitus was quite bad, but the excitement of the rich altered place I was in was certainly worth it all. Through the rest of the day, I became aware of how tired I was, and how much I wanted to sleep, and yet how scared I was to give myself over to sleep. Could I trust the body to its own devices without me as an overseeing caretaker? Let's risk it. I slept. The next day there was a memory of this turmoil. Clearly the first part of the experience might have been hard to define, but it was quite positive. But the last part makes it not really worth while.

EXTENSIONS AND COMMENTARY: This compound, BOB, is the most potent of the BOX series. And yet, as with all of the members of this family, there are overtones of physical concern, and of some worry as to the integrity of the body. There may well be a separation of activity with the two optical isomers, but there is not a tremendous push to explore this particular family much further. They can't all be winners, I guess. What would be the activities of compounds with a sulfur instead of an oxygen at the beta-oxygen position? What would be the nature of action if there were an alpha-methyl group, making all of these into amphetamine derivatives? Or what about both a sulfur and a methyl group? And what about the isomers that are intrinsic to all of this, the threo- and the erythro- and the "DUs" and the "LUs"? All this is terra incognita, and must someday be looked into. It is chemically simple, and pharmacologically provocative. Someone, somewhere, someday, answer these questions°

#14 BOD; '-METHOXY-2C-D; 4-METHYL-2,5,'-TRIMETHOXYPHENETHYLAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 39.6 g 1-(2,5-dimethoxy-4-methylphenyl)-2-nitrostyrene (see recipe for 2C-D for its preparation) in 300 mL warm MeOH was prepared. Separately, a solution of 9 g elemental sodium in 150 mL MeOH was also prepared. This sodium methoxide solution was added to the well-stirred nitrostyrene solution, which resulted in a dramatic loss of color. There was then added 75 mL acetic acid, and all was poured into 2 L H2O. This was extracted with 3x100 mL CH2Cl2. The pooled extracts were stripped of solvent, and the 35 g of residue was treated with 5 mL MeOH, allowed to stand for a short while, decanted from some insoluble residue, and the separated clear solution kept at 0 °C overnight. There was the deposition of a yellow crystalline product which, after removal by filtration and air drying, weighed 9.7 g. Recrystallization from 25 mL MeOH gave, after filtering and drying, 8.4 g of canary-yellow crystals of 1-(2,5-dimethoxy-4-methylphenyl)-1-methoxy-2-nitroethane with a mp of 78-79 °C. Evaporation of the mother liquors from the filtration of the first crop yielded 3.8 g of additional product which, upon recrystallization from 11 mL MeOH, provided another 2.7 g with a mp of 77-78 °C. Further workup of the mother liquors yielded only impure starting nitrostyrene.

A solution of LAH (96 mL of 1 M solution in THF) was cooled, under He, to 0 °C with an external ice bath. With good stirring there was added 2.4 mL 100% H2SO4 dropwise, to minimize charring. This was followed by the addition of 10.8 g 1-(2,5-dimethoxy-4-methylphenyl)-1-methoxy-2-nitroethane. There was immediate discoloration. After the addition was complete, the reaction mixture was held at reflux on the steam bath for 2 h. After cooling again, the excess hydride was destroyed with 4 mL IPA and the reaction mixture made basic with 15% NaOH. The insoluble inorganic salts were removed by filtration, and the filter cake was washed first with THF, and then with IPA. The bright yellow filtrate and washes were pooled and stripped of solvent under vacuum, yielding 14 g of a yellow oil. This was suspended in 1 L dilute H2SO4 to give an ugly, cloudy, yellow-orange mess. Extraction with 3x75 mL CH2Cl2 removed much of the color, and the remaining aqueous phase was made basic with 25% NaOH, and extracted with 3x75 mL CH2Cl2. Evaporation of the solvent under vacuum gave 9 g of a pale amber oil which was distilled at 115-130 °C at 0.4 mm/Hg. The water-white distillate was dissolved in 15 mL IPA, neutralized with concentrated HCl, and then diluted with 70 mL anhydrous Et2O. After a few min, white crystals formed, and these were removed by filtration and Et2O washed. When air-dried to constant weight, 4.49 g brilliant white crystals of 4-methyl-2,5,'-trimethoxyphenethylamine hydrochloride (BOD) with a mp of 171-172 °C with decomposition, were obtained. The mother liquors on standing deposited 0.66 g additional crystals which were impure and were discarded. Anal. (C12H20ClNO3) C,H.

DOSAGE: 15 - 25 mg.

DURATION: 8 - 16 h.

QUALITATIVE COMMENTS: (with 20 mg) There were some very pleasant visuals starting at 2-2.5 hours and continuing to 4-5 hours after the beginning of the experiment. Open eye visuals seem to come on after staring at particular areas, such as the living room ceiling or at trees. The surroundings tended to move slightly. There was no flowing of the images at all. When looking at the pine trees, the needles appeared crystal clear and sharply defined, with strong contrasts. Though the mental effect is difficult to define, I am not sure it was all that great. I did become tired of the effect (along with the confusion) after 8 hours, and was quite happy to note that it did taper off in the early evening. I am not particularly sure I would want to try this material again.

(with 20 mg) For the first three or so hours, the beauty of the experience was marred by a strange discomfort. There was some queasiness, and I felt a sluggishness of mind. Then I began moving in and out of a pleasant place, and finally the discomfort completely dissolved and the experience turned full on. Height of beauty, visual perception. Lights below are amazing. Outside, marvelous sense of Presence. There is not an elation, as often with other materials, but a strong, even powerful sense of goodness, inner strength, solidity.

(with 25 mg) This was quite quick. The onset of the experience was apparent within a half hour, and we were both at +++ within the hour. Body load minimal. There was very little visual, compared with some materials. Very interesting eyes-closed, but not continually Q just now and then an intense vision might flash. Very benign and friendly and pleasant and good-humored feeling. Superb for conversation and conceptualization.

(with 25 mg) The body load was quite noticeable for everyone. But the general state of mind was excellent; everyone was extremely relaxed and funny. Puns, insults, delightful amusement. Not very much insight work possible. Juices were needed and tolerated well, but no one was particularly hungry. Sleep was difficult for most people, not deep and not too refreshing. Excellent material, but body price a bit too much for the mental effects. Pleasant, and I wouldn't hesitate to take it again, but nothing very memorable except the tremendous humor and laughter, which was truly delightful.

EXTENSIONS AND COMMENTARY: This compound, BOD, was the first exploratory member of a new family of phenethylamines. This family is called the BOX series because an oxygen atom has been put on the benzylic carbon (the "benzyl-oxy" or "BO") of each of several well studied drugs with recognized substituent patterns on the aromatic ring. The "X" would be "D," as used here with BOD, making reference to 2C-D, it would be a "B" in BOB making reference to 2C-B, etc. Actually the original thought was to make the "O" into an "OM" for methoxy, as this would allow more versatility in the naming of things such as ethoxys ("OE") or hydroxys ("OH"), but the methoxylated 2C-B analogue would have come out as BOMB, so the idea was dropped.

Actually, the concept of naming of drugs with some acronym that is pronounceable has led into some interesting byways. Some examples have been unintended. I have heard DOM pronounced "dome" and DOET pronounced as "do it." And elsewhere I have mentioned the embarrassing occasions where the TOM and TOET families were pronounced Rthe toms and twats.S Some examples have had names that have been contractions of popular names, such as XTC for ecstasy. And there are instances where a name might be proposed simply to irritate the newspaper people. An early street suggestion for PCP was FUK, and a current name for free-base methamphetamine is SNOT. And marijuana is fondly called SHIT by its aficionados. The final RAS on government groups such as the CIA or the DEA or the FDA is strongly reminscent of the final RAS which stands for amphetamine in things such as TMA and MDMA. Might there someday be a drug such as 4-cyclopropylmethyl-N-isopropylamphetamine (CIA), or 3,5-dimethoxy-4-ethylamphetamine (DEA)? It has just occurred to me that there is already a 4-fluoro-2,5-dimethoxyamphetamine (FDA), but I have already named it DOF. If all drugs were known only by publicly embarrassing names, there might be less publicity given them by the press.

Back to the commentary on BOD. The rationale for this inclusion of a beta-oxygen atom into the structure of a phenethylamine is based directly on the chemistry that occurs naturally in the brain. The phenethylamine neurotransmitter, dopamine, is converted both in the brain and in the body to the equally important transmitter norepinephrine by just this sort of transformation. There is the enzymatic addition of an oxygen atom to the "benzylic" position of dopamine. And identical chemistry goes on with tyramine in a number of plants and animals, with a similar addition of oxygen to form octopamine, so-named for its discovered presence in the salivary glands of Octopus vulgaris. In the first explorations in the BOX series, this oxygen was intentionally blocked with a methyl group, to ease its entry into the brain, and increase the possibilities of its being active as a psychedelic. As mentioned above, the RDS in BOD follows from its ring orientation pattern being the same as that of 2C-D (and this, originally from the mimicking of the pattern of DOM). All of these D- compounds have the 2,5-dimethoxy-4-methyl ring-substitution pattern.

An interesting complication is also part of this structure package. The added methoxy group (or hydroxy group, see recipe for BOHD) also adds a new asymmetric center, allowing for the eventual separation of the material into two optical isomers. And at such time as the corresponding amphetamine homologues might be made and studied, the presence of yet another chiral center (under the alpha-methyl group) will demand that there be actually two racemic compounds synthesized, and a total of four isomers to contend with, if really careful and thorough work is to be done.

A parallel chemistry to all of this follows the addition of sodium ethoxide (rather than sodium methoxide) to the nitrostyrene. The final product, then, is the ethoxy homologue 2,5-dimethoxy-'-ethoxy-4-methylphenethylamine, or BOED. It is down in human potency by a factor of three, with a normal dosage being 70-75 milligrams. It has a ten hour duration, and is both anorexic and diuretic. There have been no visual effects or insights reported, but rather simply a highly intoxicated state.

Two synonyms, two definitions, and an expression of admiration. The word norepinephrine is synonymous with noradrenalin, and the word epinephrine is synonymous with adrenalin. The distinctions are that the first in each case is American and the second British. And the term "chiral" indicates a potential asymmetry in a molecule that would allow eventual separation into two optical isomers. The term "racemic" refers to a mixture of these two isomers which has not yet been separated into the individual components. A racemic mixture is called a racemate and, from the point of view of the human animal (which is completely asymmetric), must be considered as a mixture of two structurally identical but optically mirror-image isomers, which can be potentially separated and which will certainly have different pharmacologies. And the admiration? This is directed to the explorer who ventured close enough to an octopus to locate its salivary glands and to discover a phenethylamine there°

#15 BOH; '-METHOXY-3,4-METHYLENEDIOXYPHENETHYLAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: To a solution of 30 g piperonal in 100 mL acetic acid there was added 20 mL nitromethane and 10 mL cyclohexylamine. After heating on the steam bath for 1.5 h, the reaction mixture started to crystallize. The mixture was cooled in an ice bath, and the heavy mass of deposited crystals removed by filtration and washed with 20 mL acetic acid. All was supended in 100 mL warm MeOH, cooled again, and filtered to give 24.5 g of 3,4-methylenedioxy-'-nitrostyrene as canary-yellow crystals, with a mp of 158-160 °C. Reduction of this compound with LAH gives rise to MDPEA, which is a separate entry with a recipe of its own.

To a vigorously stirred suspension of 20 g 3,4-methylenedioxy-'-nitro -styrene in 100 mL anhydrous MeOH there was added a freshly prepared solution of 5.5 g elemental sodium in 100 mL MeOH. The nitrostyrene goes into solution over the course of 5 min. There was then added, first, 50 mL acetic acid with the stirring continued for an additional 1 min. There was then added 300 mL H2O. An oil separated and was extracted into 200 mL CH2Cl2. The organic extract was washed with 500 mL dilute aqueous NaHCO3, followed by 500 mL H2O. Removal of the solvent gave a residue that was distilled at 128-145 °C at 0.4 mm/Hg, providing 16.6 g of a yellow viscous liquid which slowly crystallized. An analytical sample was recrystallized from four volumes of MeOH to give 1-methoxy-1-(3,4-methylenedioxyphenyl)-2-nitroethane as bright yellow crystals with a mp of 58-59 °C. Anal. (C10H11NO5) C,H.

A solution of LAH (100 mL of 1 M solution in THF) was cooled, under He, to 0 °C with an external ice bath. With good stirring there was added 2.5 mL 100% H2SO4 dropwise, to minimize charring. This was followed by the addition of 12 g 1-methoxy-1-(3,4-methylenedioxyphenyl)-2-nitroethane over the course of 2 min. There was an immediate loss of color. After a few minutes further stirring, the temperature was brought up to a reflux with a heating mantle. There was a gentle gas evolution for a few min, followed by an exothermic reaction that exceeded the capacity of the condenser. Once the reaction had subsided, the unreacted hydride was destroyed with a minimum of IPA, and 15% NaOH was added to convert the inorganics to a loose white filterable mass. The reaction mixture was filtered, and the filter cake washed thoroughly with THF. The combined filtrate and washes were stripped of solvent under vacuum, providing an orange oil. This was dissolved in 400 mL dilute H2SO4, which was washed with 3x75 mL CH2Cl2. After making the aqueous phase basic, it was extracted with 2x100 mL CH2Cl2. The pooled extracts were stripped of solvent under vacuum, and the residue distilled at 103-112 °C at 0.5 mm/Hg. There was obtained 2.5 g of a colorless, viscous oil which was dissolved in 25 mL IPA, neutralized with 45 drops of concentrated HCl, and finally diluted with 30 mL anhydrous Et2O. There was thus formed '-methoxy-3,4-methylenedioxyphenethylamine hydrochloride (BOH) as a fine white crystalline product. The mp was 105-106.5 °C, with bubbling and darkening. The mp properties proved to be inconsistent, as the salt was a hydrate. Recrystallization from CH3CN, or simply heating to 100 °C in toluene, converted the salt to an anhydrous form, with mp of 152-153 °C. Anal. (C10H14ClNO3) C,H.

DOSAGE: 80 - 120 mg.

DURATION: 6 - 8 h.

QUALITATIVE COMMENTS: (with 90 mg) Distinct body awareness in an hour. The threshold is mostly physical. Faint sense of inside warmth, skin prickling, cold feet, loose bowels, anorexia. By the fifth hour, I was on the downslope, and in retrospect I found it good humored but not insightful.

(with 100 mg) There was a vague nausea, and a chilling of the feet. It reached a real plus two, with dilated pupils and quite a thirst. How can one describe the state? There were no visuals, and I was not even stoned. I was just very turned on. And I was completely back to baseline by hour number six.

EXTENSIONS AND COMMENTARY: There are several reports of a nice, mild mood enhancement in the 20-40 milligram dosage area, but searches for psychedelic effects at higher levels gave a strange mix of some sort of an altered state along with bodily discomfort. The BOH name for this member of the BOX family follows the convention discussed in the BOD recipe Q with RHS for homopiperonylamine, the simplest of the muni-metro family, q.v. The demethylated homologue of BOH is BOHH, and is the methylenedioxy analogue of norepinephrine. It might well hydrolytically open up in the body to provide this neurotransmitter, and serve as some sort of transmitter in its own right. It is discussed under DME.

Maybe there is something to the concept that when you imitate a neurotransmitter too closely, you get a hybrid gemisch of activity. The term "pro-drug" is used to identify a compound that may not be intrinsically active, but one which metabolizes in the body to provide an active drug. I feel the term should have been pre-drug, but pro-drug was the word that caught on. BOH may well act in the body as a pro-drug to norepinephrine, but with the temporary blocking of the polar functions with ether groups, it can gain access to the brain. And once there, it can be stripped of these shields and play a direct neurological role. I uncovered a very similar analogy in the tryptamine world some years ago. Just as norepinephrine is a neurotransmitter, so is serotonin. And I found that by putting an O-ether on the indolic phenol (to hide its polarity) and an alpha-methyl group next to the primary amine (to protect it from metabolic deaminase), it became an extremely potent, and most complex, psychedelic. This was the compound alpha,O-dimethylserotonin, or a,O-DMS. There is an uncanny analogy between this tryptamine and the phenethylamine BOH.

Somehow the quiet voice deep inside me says, don't use too much, too quickly. Maybe one of the optical isomers is the body thing, and the other isomer is the mind thing. So far, only the racemic mixture has been tasted, to the best of my knowledge.

#16 BOHD; 2,5-DIMETHOXY-'-HYDROXY-4-METHYLPHENETHYLAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 0.4 g 1-(2,5-dimethoxy-4-methylphenyl)-1-methoxy-2-nitroethane (see preparation in the recipe for BOD) in 3.0 mL acetic acid was heated to 100 °C on a steam bath. There was added 1.0 g powdered zinc, followed by additional acetic acid as needed to maintain smooth stirring. After 0.5 h there was added 1.0 mL concentrated HCl and, following an additional few minutes heating, the reaction mixture was poured into 300 mL H2O. After washing the aqueous phase with 3x75 mL CH2Cl2, the mixture was made basic with 25% NaOH, and extracted with 3x50 mL CH2Cl2. Removal of the solvent and distillation of the residue at 130-140 °C 0.25 mm/Hg gave an oil that, on dissolving in IPA, neutralization with concentrated HCl, and the addition of anhydrous Et2O, gave beautiful white crystals of 2,5-dimethoxy-'-hydroxy-4-methylphenethylamine hydrochloride (BOHD). The yield was 0.2 g, and the mp was 180-181 °C. The infrared spectrum was that of an amine salt with a strong OH group present. Anal. (C11H18ClNO3) C,H.

DOSAGE: greater than 50 mg.

DURATION: unknown.

QUALITATIVE COMMENTS: (with 50 mg) At about the two hour point, there was a precipitous drop of blood pressure (from 120/72 to 84/68) although the pulse stayed steady at 60. This trend had been apparent in earlier trials, and was being watched carefully. No further tests are planned.

EXTENSIONS AND COMMENTARY: The usual method of making beta-ethanolamine such as this is through the reduction of the cyanohydrin of the corresponding benzaldehyde and, in fact, that method is described in the recipe for DME. This above procedure was actually part of an exploration of different agents that might be used in the reduction of the intermediate nitroalkane. This product was the unexpected result of trying zinc.

Why the potent cardiovascular effect seen by this compound? There are a couple of points that might argue for some adrenolytic toxicity. This material is a beta-ethanolamine and, with maybe one or two exceptions, clinically used beta-receptor blockers are beta-ethanolamines. In fact, a few of these so-called beta-blockers actually have two methoxy groups on the aromatic rings, also a property of BOHD. The antidiabetic drug Butaxamine (BW 64-9 in the code of Burroughs Wellcome) is identical to BOHD except that the 4-methyl group is on the alpha-carbon instead, and there is a tertiary butyl group on the nitrogen atom. Another point involves the proximity of the beta-hydroxy group and the methoxyl oxygen atom in the 2-position of the ring. There is going to be a strong hydrogen-bonding with this orientation, with the formation of a stable six-membered ring. This might help obscure the hydrophilic nature of the free hydroxyl group and allow the compound to pass into the brain easily. If this group is masked by an easily removed group such as an acetate ester, one gets the compound beta-acetoxy-3,4-dimethoxy-4-methylphenethylamine (BOAD) which is similar to BOHD as a hypotensive.

The code-naming procedure used here (and elsewhere here in Book II) is: (1) to use "BO" as the alert to there being an oxygen on the benzyl carbon of a phenethylamine (it is a benzyl alcohol); (2) if there is just one more letter (a third and last letter) it will identify the 2C-X parent from which it has been derived ["B" comes from 2C-B, "D" comes from 2C-D, "H" comes from homopiperonylamine (MDPEA) rather than from 2C-H, "M" comes from mescaline, and in every case the beta-substituent is a methoxy group]; and (3) if there are four letters, then the fourth letter is as above, and the third letter (the next to last letter) is the substituent on that benzylic oxygen. With a three letter code, the substituent is a methyl group, an "H" for a third letter of four makes it a hydroxyl group, and an RAS for the third letter is an acetyl group, and an "E" is for an ethyl group. A similar sort of cryptographic music was composed by Du Pont in their three-number codes for the Freons. The first number was one less than the number of carbons in the molecule, the second number was one more than the number of hydrogens in the molecule, the third number was the exact number of fluorines in the molecule, and the rest of the bonds were filled with chlorines, Thus Freon 11 (really Freon 011) was trichlorofluoromethane and Freon 116 was hexafluoroethane.

Complex, yes. But both systems are completely straightforward, and flexible for future creations. A few additional examples of similar beta-ethanolamines are scattered throughout Book II and they have, in general, proved to be uninteresting, at least as potential psychedelic compounds.

#17 BOM; '-METHOXYMESCALINE; 3,4,5,'-TETRAMETHOXYPHENETHYLAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: To a vigorously stirred suspension of 9.0 g '-nitro-3,4,5-trimethoxystyrene (see under the recipe for M for the preparation of this intermediate) in 50 mL anhydrous MeOH there was added a solution obtained from the addition of 2.0 g metallic sodium to 50 mL anhydrous MeOH. The bright orange color faded to a light cream as the nitrostyrene went into solution. After 3 min there was added 30 mL acetic acid, which produced white solids, and this was followed by further dilution with 150 mL H2O. The formed solids were removed by filtration, washed well with H2O, and recrystallized from 150 mL boiling MeOH. After removal of the product by filtration and air drying to constant weight, there was obtained 6.9 g of 1-methoxy-2-nitro-1-(3,4,5-trimethoxyphenyl)ethane as fine, cream-colored crystals. The mp was 143-144 °C, and the Rf by TLC (silica-gel plates and CH2Cl2 as moving phase) was identical to that of the starting aldehyde. Anal. (C12H17NO6) C,H.

A solution of LAH (50 mL of 1 M solution in THF) was cooled, under He, to 0 °C with an external ice bath. With good stirring there was added 1.25 mL 100% H2SO4 dropwise, to minimize charring. This was followed by the addition of 6 g of solid 1-methoxy-2-nitro-1-(3,4,5-trimethoxyphenyl)ethane over the course of 2 min. There was some gas evolution. After 5 min additional stirring, the temperature was brought up to a reflux with a heating mantle. There was a gentle gas evolution for a few minutes, followed by an exothermic reaction with vigorous gas evolution. Once everything had settled down, the reaction mixture was held at reflux temperature for an additional 2 h. The excess hydride was destroyed by the addition of IPA and 15% NaOH was added to convert the inorganic salts to a loose white filterable mass. The reaction mixture was filtered, and the filter cake washed thoroughly with THF. The combined filtrate and washes were stripped of solvent under vacuum which provided a red-brown liquid. This was dissolved in dilute H2SO4 and washed with 3x75 mL CH2Cl2. After making the aqueous phase basic with NaOH, it was extracted with 2x100 mL CH2Cl2. The pooled extracts were stripped of solvent under vacuum, and the colorless residue distilled at 120-150 °C at 0.3 mm/Hg. There was obtained 2.8 g of a colorless oil which was dissolved in 30 mL IPA and neutralized with concentrated HCl, allowing the spontaneous formation of the hydrochloride salt. This was diluted with 75 mL anhydrous Et2O, yielding 2.8 g 3,4,5,'-tetramethoxyphenethylamine hydrochloride (BOM) as a white crystalline product. This had a mp of 198.5-199.5 °C. Anal. (C12H20ClNO4) C,H.

DOSAGE: greater than 200 mg.

DURATION: unknown.

EXTENSIONS AND COMMENTARY: There are some indicators of central activity with assays involving both the 120 milligram and the 180 milligram levels, but nothing that can be rated as over a plus one. It can be seen with the two active members of the BOX series (BOD and BOB) that the potency is about equal to, or a little more (up to a factor of maybe x2), than the analogue without the methoxyl group on the aliphatic chain. If this formula were to hold in the relationship between mescaline and BOM, the active level might well be in the 200-400 milligram range. But at the moment, it remains unknown.

Again, the name of the compound (BOM) is from the RBO-S prefix of this family (from benzyl + oxy), plus the "M" of mescaline (which has provided the ring substitution pattern).

#18 4-BR-3,5-DMA; 3,5-DIMETHOXY-4-BROMOAMPHETAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: The starting material 3,5-dimethoxy-4-bromobenzoic acid (made from the commercially available resorcinol by the action of methyl sulfate) was a white crystalline solid from aqueous EtOH with a mp of 248-250 °C. Reaction with thionyl chloride produced 3,5-dimethoxy-4-bromobenzoyl chloride which was used as the crude solid product, mp 124-128 °C. This was reduced with tri-O-(t)-butoxy lithium aluminum hydride to produce 3,5-dimethoxy-4-bromobenzaldehyde which was recrystallized from aqueous MeOH and had a mp of 112-114 °C. Anal. (C9H9BrO3) C,H. This aldehyde, with nitroethane and anhydrous ammonium acetate in acetic acid, was converted to the nitrostyrene 1-(3,5-dimethoxy-4-bromophenyl)-2-nitropropene, with a mp of 121-121.5 °C. Anal. (C11H12BrNO4) C,H,N. This was reduced at low temperature with just one equivalent of LAH, to minimize reductive removal of the bromine atom. The product 3,5-dimethoxy-4-bromoamphetamine hydrochloride (4-BR-3,5-DMA) was isolated in a 37% yield and had a mp of 221-222 °C. Anal. (C11H17BrClNO2) C,H,N.

DOSAGE: 4 - 10 mg.

DURATION: 8 - 12 h.

QUALITATIVE COMMENTS: (with 3 mg) This is certainly no placebo. At about 2 hours I felt some analgesia and numbing in my extremities, but if there were any sensory distortions, they were barely perceptible.

(with 6 mg) There is a very shallow threshold, no more.

(with 10 mg) I can certainly confirm the indications of anesthesia that were hinted at. It was for me central in nature, however. I could (this at three hours) pierce a skin pinch on my left arm with no bother except for the emerging of the needle due to skin resistance. There was little bleeding. And multiple needle prickings into the thumb abductor were not felt. A quick plunge of the tip of my little finger into boiling water elicited reflex response, but no residual pain. Judgment was OK, so I stayed out of physical trouble, luckily° The perhaps ++ was dropping in the fourth or fifth hour, and by the tenth hour there were few effects still noted, except for some teeth-rubbiness and a burning irritation at the pin-prick area, so feeling is back. No sleep problems at just past midnight.

EXTENSIONS AND COMMENTARY: Here is a complex and, at the moment, totally undefined drug. There were two independent reports of analgesia, yet a thorough screen in experimental animals, conducted by a major pharmaceutical house, failed to confirm any of it. A ++ report does not necessarily reflect a psychedelic effect, since this quantitative measure of the level of activity represents the extent of impairment of function, regardless of the nature of the drug producing it. In other words, if you were experiencing the effects of a drug that would in your judgment interfere with safe and good driving, this would be a ++ whether your performance was being limited by a psychedelic, a stimulant, a hypnotic or a narcotic. None of the quantitative reports ever mentioned any sensory distortion (analgesia is a loss, not a distortion) or visual effect. Perhaps 4-BR-3,5-DMA showed its ++ as a narcotic. But then, the rats had said no.

#19 2-BR-4,5-MDA; 6-BR-MDA; 2-BROMO-4,5-METHYLENEDIOXYAMPHETAMINE

PiHKAL: The Chemical Story 1
Pin it

SYNTHESIS: A solution of 3,4-methylenedioxyamphetamine (MDA) in acetic acid was treated with elemental bromine, generating the hydrobromide salt of 2-bromo-4,5-methylenedioxyamphetamine in a yield of 61% of theory. The mp was 221-222 °C. Anal. (C10H13Br2NO2) C,H,Br.

DOSAGE: 350 mg.

DURATION: unknown.

EXTENSIONS AND COMMENTARY: Both the synthetic and the pharmacological details for this compound are sparse. There has been only a single report of the human activity of this drug in the literature, and the statement has been offered that the effects are amphetamine-like. No other qualitative comments have been made available, and neither I nor anyone in my circle has tried it, personally. Someday, perhaps. But at that high level, perhaps not.

next →
loading
sending ...
New to Neperos ? Sign Up for free
download Neperos App from Google Play
install Neperos as PWA

Let's discover also

Recent Articles

Recent Comments

Neperos cookies
This website uses cookies to store your preferences and improve the service. Cookies authorization will allow me and / or my partners to process personal data such as browsing behaviour.

By pressing OK you agree to the Terms of Service and acknowledge the Privacy Policy

By pressing REJECT you will be able to continue to use Neperos (like read articles or write comments) but some important cookies will not be set. This may affect certain features and functions of the platform.
OK
REJECT